HexoDSP/src/dsp/node_tseq.rs

242 lines
8.5 KiB
Rust
Raw Normal View History

// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This is a part of HexoDSP. Released under (A)GPLv3 or any later.
// See README.md and COPYING for details.
use crate::nodes::{NodeAudioContext, NodeExecContext};
2021-06-20 11:14:19 +00:00
use crate::dsp::helpers::TriggerPhaseClock;
use crate::dsp::{NodeId, SAtom, ProcBuf, DspNode, LedPhaseVals};
use crate::dsp::tracker::TrackerBackend;
use crate::dsp::MAX_BLOCK_SIZE;
#[macro_export]
macro_rules! fa_tseq_cmode { ($formatter: expr, $v: expr, $denorm_v: expr) => { {
let s =
match ($v.round() as usize) {
0 => "RowT",
1 => "PatT",
2 => "Phase",
_ => "?",
};
write!($formatter, "{}", s)
} } }
/// A tracker based sequencer
#[derive(Debug)]
pub struct TSeq {
backend: Option<Box<TrackerBackend>>,
2021-06-20 11:14:19 +00:00
clock: TriggerPhaseClock,
srate: f64,
}
impl Clone for TSeq {
fn clone(&self) -> Self { Self::new(&NodeId::Nop) }
}
impl TSeq {
pub fn new(_nid: &NodeId) -> Self {
Self {
backend: None,
srate: 48000.0,
2021-06-20 11:14:19 +00:00
clock: TriggerPhaseClock::new(),
}
}
pub fn set_backend(&mut self, backend: TrackerBackend) {
self.backend = Some(Box::new(backend));
}
pub const clock : &'static str =
"TSeq clock\nClock input\nRange: (0..1)\n";
pub const cmode : &'static str =
"TSeq cmode\n'clock' input signal mode:\n\
- RowT: Trigger = advance row\n\
- PatT: Trigger = pattern rate\n\
- Phase: Phase to pattern index\n\
\n";
pub const trk1 : &'static str =
"TSeq trk1\nTrack 1 signal output\nRange: (-1..1)\n";
pub const trk2 : &'static str =
"TSeq trk2\nTrack 2 signal output\nRange: (-1..1)\n";
pub const trk3 : &'static str =
"TSeq trk3\nTrack 3 signal output\nRange: (-1..1)\n";
pub const trk4 : &'static str =
"TSeq trk4\nTrack 4 signal output\nRange: (-1..1)\n";
pub const trk5 : &'static str =
"TSeq trk5\nTrack 5 signal output\nRange: (-1..1)\n";
pub const trk6 : &'static str =
"TSeq trk6\nTrack 6 signal output\nRange: (-1..1)\n";
pub const gat1 : &'static str =
"TSeq gat1\nTrack 1 gate output\nRange: (-1..1)\n";
pub const gat2 : &'static str =
"TSeq gat2\nTrack 2 gate output\nRange: (-1..1)\n";
pub const gat3 : &'static str =
"TSeq gat3\nTrack 3 gate output\nRange: (-1..1)\n";
pub const gat4 : &'static str =
"TSeq gat4\nTrack 4 gate output\nRange: (-1..1)\n";
pub const gat5 : &'static str =
"TSeq gat5\nTrack 5 gate output\nRange: (-1..1)\n";
pub const gat6 : &'static str =
"TSeq gat6\nTrack 6 gate output\nRange: (-1..1)\n";
2021-06-07 03:00:10 +00:00
2021-06-08 16:59:31 +00:00
pub const DESC : &'static str =
"Tracker (based) Sequencer\n\n\
This node implements a sequencer that can be programmed \
using the tracker interface in HexoSynth on the right.\n\
It provides 6 CV signal and 6 gate outputs.";
pub const HELP : &'static str =
r#"Tracker (based) Sequencer
This tracker provides 6 columns that each can have one of the following
types:
- Note column: for specifying pitches.
- Step column: for specifying non interpolated CV signals.
- Value column: for specifying linearily interpolated CV signals.
- Gate column: for specifying gates, with probability and ratcheting.
Step, value and gate cells can be set to 4096 (0xFFF) different values
or contain nothing at all. For step and value columns these values
are mapped to the 0.0-1.0 CV signal range, with 0xFFF being 1.0
and 0x000 being 0.0.
The gate cells are differently coded:
- 0x00F: The least significant nibble controls the gate length.
With 0x00F being the full row, and 0x000 being 1/16th of a row.
- 0x0F0: The second nibble controls ratcheting, with 0x0F0 being one
gate per row, and 0x000 being 16 gates per row.
- 0xF00: The most significant nibble controls probability of the
whole gate cell. With 0xF00 meaing the gate will always be
triggered, and 0x000 means that the gate is only triggered with
6% probability. 50% is 0x070.
The behaviour of the 6 gate outputs of TSeq depend on the corresponding
column type:
- Step gat1-gat6: Like note columns, this will output a 1.0 for the whole
row if a step value is set. With two step values directly
following each other no 0.0 will be emitted inbetween
the rows. This means if you want to drive an envelope
with release phase with this signal, you need to make
space for the release phase.
- Note gat1-gat6: Behaves just like step columns.
- Gate gat1-gat6: Behaves just like step columns.
- Value gat1-gat6: Outputs a 1.0 value for the duration of the last row.
You can use this to trigger other things once the
sequence has been played.
"#;
}
impl DspNode for TSeq {
fn outputs() -> usize { 1 }
fn set_sample_rate(&mut self, srate: f32) {
self.srate = srate as f64;
}
fn reset(&mut self) {
self.backend = None;
self.clock.reset();
}
#[inline]
fn process<T: NodeAudioContext>(
&mut self, ctx: &mut T, _ectx: &mut NodeExecContext,
atoms: &[SAtom], _params: &[ProcBuf], inputs: &[ProcBuf],
outputs: &mut [ProcBuf], ctx_vals: LedPhaseVals)
{
use crate::dsp::{out, inp, at};
let clock = inp::TSeq::clock(inputs);
let cmode = at::TSeq::cmode(atoms);
let backend =
if let Some(backend) = &mut self.backend {
backend
} else { return; };
backend.check_updates();
let mut phase_out : [f32; MAX_BLOCK_SIZE] =
[0.0; MAX_BLOCK_SIZE];
let cmode = cmode.i();
2021-06-21 04:05:53 +00:00
let plen = backend.pattern_len() as f64;
for frame in 0..ctx.nframes() {
let phase =
match cmode {
2021-06-21 04:05:53 +00:00
0 => self.clock.next_phase(plen, clock.read(frame)) / plen,
1 => self.clock.next_phase(1.0, clock.read(frame)),
2 | _ => (clock.read(frame).abs() as f64).fract(),
};
phase_out[frame] = phase as f32;
}
// println!("PHASE {}", phase_out[0]);
let mut col_out : [f32; MAX_BLOCK_SIZE] =
[0.0; MAX_BLOCK_SIZE];
let mut col_out_gate : [f32; MAX_BLOCK_SIZE] =
[0.0; MAX_BLOCK_SIZE];
let col_out_slice = &mut col_out[ 0..ctx.nframes()];
let col_out_gate_slice = &mut col_out_gate[0..ctx.nframes()];
let phase_out_slice = &phase_out[ 0..ctx.nframes()];
let out_t1 = out::TSeq::trk1(outputs);
backend.get_col_at_phase(
0, phase_out_slice, col_out_slice, col_out_gate_slice);
out_t1.write_from(col_out_slice);
let out_g1 = out::TSeq::gat1(outputs);
out_g1.write_from(col_out_gate_slice);
ctx_vals[0].set(col_out_slice[col_out_slice.len() - 1]);
let out_t2 = out::TSeq::trk2(outputs);
backend.get_col_at_phase(
1, phase_out_slice, col_out_slice, col_out_gate_slice);
out_t2.write_from(col_out_slice);
let out_g2 = out::TSeq::gat2(outputs);
out_g2.write_from(col_out_gate_slice);
let out_t3 = out::TSeq::trk3(outputs);
backend.get_col_at_phase(
2, phase_out_slice, col_out_slice, col_out_gate_slice);
out_t3.write_from(col_out_slice);
let out_g3 = out::TSeq::gat3(outputs);
out_g3.write_from(col_out_gate_slice);
let out_t4 = out::TSeq::trk4(outputs);
backend.get_col_at_phase(
3, phase_out_slice, col_out_slice, col_out_gate_slice);
out_t4.write_from(col_out_slice);
let out_g4 = out::TSeq::gat4(outputs);
out_g4.write_from(col_out_gate_slice);
let out_t5 = out::TSeq::trk5(outputs);
backend.get_col_at_phase(
4, phase_out_slice, col_out_slice, col_out_gate_slice);
out_t5.write_from(col_out_slice);
let out_g5 = out::TSeq::gat5(outputs);
out_g5.write_from(col_out_gate_slice);
let out_t6 = out::TSeq::trk6(outputs);
backend.get_col_at_phase(
5, phase_out_slice, col_out_slice, col_out_gate_slice);
out_t6.write_from(col_out_slice);
let out_g6 = out::TSeq::gat6(outputs);
out_g6.write_from(col_out_gate_slice);
ctx_vals[1].set(phase_out_slice[phase_out_slice.len() - 1]);
}
}