mod common; use common::*; fn setup_sfilter_matrix() -> (Matrix, NodeExecutor) { let (node_conf, node_exec) = new_node_engine(); let mut matrix = Matrix::new(node_conf, 3, 3); let noise = NodeId::Noise(0); let sf = NodeId::SFilter(0); let out = NodeId::Out(0); matrix.place(0, 0, Cell::empty(noise) .out(None, None, noise.out("sig"))); matrix.place(0, 1, Cell::empty(sf) .input(sf.inp("inp"), None, None) .out(None, None, sf.out("sig"))); matrix.place(0, 2, Cell::empty(out) .input(out.inp("ch1"), None, None)); matrix.place(1, 1, Cell::empty(noise) .out(None, None, noise.out("sig"))); matrix.place(1, 2, Cell::empty(out) .input(out.inp("ch2"), None, None)); matrix.sync().unwrap(); (matrix, node_exec) } fn fft_with_freq_res_type( matrix: &mut Matrix, node_exec: &mut NodeExecutor, ftype: i64, freq: f32, res: f32) -> Vec<(u16, u32)> { let sf = NodeId::SFilter(0); pset_d(matrix, sf, "freq", freq); pset_d_wait(matrix, node_exec, sf, "res", res); pset_s(matrix, sf, "ftype", ftype); run_and_get_fft4096(node_exec, 0, 1000.0) } #[test] fn check_node_sfilter_lowpass() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // Low Pass @ 1000Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 0, 1000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000, ], &fft[..]), vec![ (0, 16), (100, 24), (250, 16), (500, 12), (750, 12), (1000, 12), (1500, 8), (2000, 4), (3000, 4), (4000, 0), (8000, 0), (12000, 0), ]); // let v = run_and_get_fft4096_2(&mut node_exec, 1); // assert_eq!( // avg_fft_freqs(4.0, &[ // 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000, // ], &v[..]), vec![ // (0, 16), (100, 24), (250, 16), (500, 12), (750, 12), (1000, 12), // (1500, 8), (2000, 4), (3000, 4), (4000, 0), (8000, 0), (12000, 0), // ]); // assert!(false); // Low Pass @ 4000Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 0, 4000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000, ], &fft[..]), vec![ (0, 16), (100, 20), (250, 16), (500, 12), (750, 20), (1000, 16), (1500, 16), (2000, 16), (3000, 12), (4000, 8), (8000, 4), (12000, 4), ]); // Low Pass @ 22050Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 0, 22050.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16), ]); // Low Pass @ 0Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 0, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0), ]); } #[test] fn check_node_sfilter_lowpass_tpt() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // Low Pass TPT @ 1000Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 1, 1000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000, ], &fft[..]), vec![ (0, 16), (100, 24), (250, 16), (500, 12), (750, 12), (1000, 12), (1500, 8), (2000, 4), (3000, 4), (4000, 0), (8000, 0), (12000, 0), ]); // Low Pass TPT @ 4000Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 1, 4000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000, ], &fft[..]), vec![ (0, 16), (100, 20), (250, 16), (500, 12), (750, 20), (1000, 16), (1500, 16), (2000, 16), (3000, 12), (4000, 8), (8000, 4), (12000, 0), ]); // Low Pass TPT @ 22050Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 1, 22050.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16), ]); // Low Pass TPT @ 0Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 1, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0), ]); } #[test] fn check_node_sfilter_highpass() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // High Pass @ 1000Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 2, 1000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 250, 500, 750, 1000, 1500, 2000, 3000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 4), (250, 4), (500, 8), (750, 8), (1000, 16), (1500, 16), (2000, 16), (3000, 16), (8000, 16), ]); // High Pass @ 4000Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 2, 4000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 250, 500, 750, 1000, 1500, 2000, 3000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 0), (250, 0), (500, 0), (750, 4), (1000, 4), (1500, 4), (2000, 8), (3000, 12), (8000, 16), ]); // High Pass @ 22050Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 2, 22050.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 0), (4000, 8), (12000, 16), ]); // High Pass @ 0Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 2, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 24), (100, 16), (1000, 16), (4000, 16), (12000, 16), ]); } #[test] fn check_node_sfilter_highpass_tpt() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // High Pass TPT @ 1000Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 3, 1000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 250, 500, 750, 1000, 1500, 2000, 3000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 0), (250, 4), (500, 8), (750, 8), (1000, 16), (1500, 16), (2000, 16), (3000, 16), (8000, 16), ]); // High Pass TPT @ 4000Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 3, 4000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 250, 500, 750, 1000, 1500, 2000, 3000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 0), (250, 0), (500, 0), (750, 4), (1000, 4), (1500, 4), (2000, 8), (3000, 12), (8000, 16), ]); // High Pass TPT @ 22050Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 3, 22050.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0), ]); // High Pass TPT @ 0Hz let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 3, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 24), (100, 16), (1000, 16), (4000, 16), (12000, 16), ]); } #[test] fn check_node_sfilter_halsvf_lowpass() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // Low Pass Hal Chamberlin SVF @ 1000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 1000.0, 1.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 20), (500, 20), (700, 50), (900, 240), (1000, 60), (1500, 10), (2000, 0), (3000, 0), (4000, 0) ]); // Low Pass Hal Chamberlin SVF @ 1000Hz RES=0.5 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 1000.0, 0.5); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 20), (500, 20), (700, 30), (900, 40), (1000, 20), (1500, 0), (2000, 0), (3000, 0), (4000, 0) ]); // Low Pass Hal Chamberlin SVF @ 1000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 1000.0, 0.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 10), (500, 20), (700, 20), (900, 10), (1000, 10), (1500, 0), (2000, 0), (3000, 0), (4000, 0) ]); // Low Pass Hal Chamberlin SVF @ 4000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 4000.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 24), (100, 16), (500, 20), (1000, 20), (2000, 40), (3500, 340), (4000, 180), (5000, 20), (6000, 8), (8000, 0) ]); // Low Pass Hal Chamberlin SVF @ 4000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 4000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 20), (100, 12), (500, 16), (1000, 16), (2000, 20), (3500, 20), (4000, 16), (5000, 8), (6000, 4), (8000, 0) ]); // Low Pass Hal Chamberlin SVF @ 22050Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 22050.0, 0.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16), (16000, 24), (20000, 16) ]); // Low Pass Hal Chamberlin SVF @ 22050Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 22050.0, 1.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 8), (100, 16), (1000, 16), (4000, 24), (12000, 160), (16000, 176), (20000, 24) ]); // Low Pass Hal Chamberlin SVF @ 0Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 12), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0), ]); // Low Pass Hal Chamberlin SVF @ 0Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 0.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[1, 5, 10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 56), (1, 0), (5, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0), ]); } #[test] fn check_node_sfilter_halsvf_highpass() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // High Pass Hal Chamberlin SVF @ 1000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 1000.0, 1.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 0), (500, 0), (700, 30), (900, 220), (1000, 80), (1500, 30), (2000, 20), (3000, 20), (4000, 10) ]); // High Pass Hal Chamberlin SVF @ 1000Hz RES=0.5 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 1000.0, 0.5); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 0), (500, 0), (700, 20), (900, 30), (1000, 30), (1500, 20), (2000, 20), (3000, 20), (4000, 20) ]); // High Pass Hal Chamberlin SVF @ 1000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 1000.0, 0.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 0), (500, 0), (700, 10), (900, 10), (1000, 20), (1500, 20), (2000, 20), (3000, 20), (4000, 10) ]); // High Pass Hal Chamberlin SVF @ 4000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 4000.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 0), (500, 0), (1000, 0), (2000, 20), (3500, 320), (4000, 200), (5000, 40), (6000, 28), (8000, 20) ]); // High Pass Hal Chamberlin SVF @ 4000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 4000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 0), (500, 0), (1000, 0), (2000, 8), (3500, 12), (4000, 16), (5000, 16), (6000, 20), (8000, 20) ]); // High Pass Hal Chamberlin SVF @ 22050Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 22050.0, 0.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 8), (4000, 24), (12000, 32), (16000, 40), (20000, 40) ]); // High Pass Hal Chamberlin SVF @ 22050Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 22050.0, 1.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 0), (4000, 8), (12000, 144), (16000, 192), (20000, 48) ]); // High Pass Hal Chamberlin SVF @ 0Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 52), (10, 12), (100, 20), (1000, 16), (4000, 16), (12000, 16) ]); // High Pass Hal Chamberlin SVF @ 0Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 0.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 112), (10, 36), (100, 16), (1000, 20), (4000, 16), (12000, 20) ]); } #[test] fn check_node_sfilter_halsvf_bandpass() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // Band Pass Hal Chamberlin SVF @ 1000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 1000.0, 1.0); assert_eq!( avg_fft_freqs(10.0, &[ 250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 0), (250, 0), (500, 10), (700, 40), (900, 230), (1000, 70), (1500, 20), (2000, 0), (3000, 0), (4000, 0) ]); // Band Pass Hal Chamberlin SVF @ 1000Hz RES=0.5 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 1000.0, 0.5); assert_eq!( avg_fft_freqs(10.0, &[ 250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 0), (250, 0), (500, 10), (700, 30), (900, 30), (1000, 30), (1500, 10), (2000, 0), (3000, 0), (4000, 0) ]); // Band Pass Hal Chamberlin SVF @ 1000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 1000.0, 0.0); assert_eq!( avg_fft_freqs(10.0, &[ 250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 0), (250, 0), (500, 10), (700, 10), (900, 10), (1000, 10), (1500, 10), (2000, 0), (3000, 0), (4000, 0) ]); // Band Pass Hal Chamberlin SVF @ 4000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 4000.0, 1.0); assert_eq!( avg_fft_freqs(10.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 0), (500, 0), (1000, 0), (2000, 20), (3500, 330), (4000, 190), (5000, 30), (6000, 10), (8000, 0) ]); // Band Pass Hal Chamberlin SVF @ 4000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 4000.0, 0.0); assert_eq!( avg_fft_freqs(10.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 0), (500, 0), (1000, 0), (2000, 10), (3500, 20), (4000, 10), (5000, 10), (6000, 10), (8000, 10) ]); // Band Pass Hal Chamberlin SVF @ 22050Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 22050.0, 0.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0), (16000, 0), (20000, 0) ]); // Band Pass Hal Chamberlin SVF @ 22050Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 22050.0, 1.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 0), (4000, 8), (12000, 136), (16000, 200), (20000, 48) ]); // Band Pass Hal Chamberlin SVF @ 0Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 48), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0) ]); // Band Pass Hal Chamberlin SVF @ 0Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 0.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 4), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0) ]); } #[test] fn check_node_sfilter_halsvf_notch() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // Notch Hal Chamberlin SVF @ 1000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 1000.0, 1.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 10), (500, 10), (700, 10), (850, 10), (900, 20), (950, 10), (1000, 10), (1100, 20), (1200, 20), (1400, 20), (2000, 10), (3000, 10), (4000, 10) ]); // Notch Hal Chamberlin SVF @ 1000Hz RES=0.5 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 1000.0, 0.5); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 10), (500, 10), (700, 10), (850, 10), (900, 0), (950, 0), (1000, 0), (1100, 0), (1200, 10), (1400, 10), (2000, 10), (3000, 10), (4000, 10) ]); // Notch Hal Chamberlin SVF @ 1000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 1000.0, 0.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 10), (500, 10), (700, 0), (850, 0), (900, 0), (950, 0), (1000, 0), (1100, 0), (1200, 0), (1400, 10), (2000, 10), (3000, 10), (4000, 10) ]); // Notch Hal Chamberlin SVF @ 4000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 4000.0, 1.0); assert_eq!( avg_fft_freqs(10.0, &[ 100, 500, 1000, 2000, 3500, 4000, 4500, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 20), (100, 10), (500, 10), (1000, 10), (2000, 10), (3500, 10), (4000, 20), (4500, 10), (5000, 10), (6000, 20), (8000, 10) ]); // Notch Hal Chamberlin SVF @ 4000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 4000.0, 0.0); assert_eq!( avg_fft_freqs(10.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 20), (100, 10), (500, 10), (1000, 10), (2000, 10), (3500, 0), (4000, 0), (5000, 0), (6000, 10), (8000, 10) ]); // Notch Hal Chamberlin SVF @ 22050Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 22050.0, 0.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16), (16000, 16), (20000, 16) ]); // Notch Hal Chamberlin SVF @ 22050Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 22050.0, 1.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 8), (100, 16), (1000, 16), (4000, 16), (12000, 16), (16000, 16), (20000, 16) ]); // Notch Hal Chamberlin SVF @ 0Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 68), (10, 12), (100, 20), (1000, 16), (4000, 16), (12000, 16) ]); // Notch Hal Chamberlin SVF @ 0Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 0.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 20), (10, 32), (100, 16), (1000, 20), (4000, 16), (12000, 20) ]); } #[test] fn check_node_sfilter_simpersvf_lowpass() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // Low Pass Simper SVF @ 1000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 1000.0, 1.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 20), (500, 20), (700, 50), (900, 240), (1000, 60), (1500, 10), (2000, 0), (3000, 0), (4000, 0) ]); // Low Pass Simper SVF @ 1000Hz RES=0.5 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 1000.0, 0.5); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 10), (500, 10), (700, 20), (900, 20), (1000, 10), (1500, 0), (2000, 0), (3000, 0), (4000, 0) ]); // Low Pass Simper SVF @ 1000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 1000.0, 0.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 10), (500, 10), (700, 10), (900, 0), (1000, 0), (1500, 0), (2000, 0), (3000, 0), (4000, 0) ]); // Low Pass Simper SVF @ 4000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 4000.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 24), (100, 16), (500, 20), (1000, 20), (2000, 36), (3500, 332), (4000, 164), (5000, 20), (6000, 8), (8000, 0) ]); // Low Pass Simper SVF @ 4000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 4000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 20), (100, 12), (500, 16), (1000, 16), (2000, 12), (3500, 8), (4000, 8), (5000, 4), (6000, 4), (8000, 0) ]); // Low Pass Simper SVF @ 22050Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 22050.0, 0.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050, 22051], &fft[..]), vec![ (0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16), (16000, 16), (20000, 16), (22050, 0) ]); // Low Pass Simper SVF @ 22050Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 22050.0, 1.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050, 22051], &fft[..]), vec![ (0, 8), (100, 16), (1000, 16), (4000, 16), (12000, 16), (16000, 16), (20000, 16), (22050, 0) ]); // Low Pass Simper SVF @ 0Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050, 22051], &fft[..]), vec![ (0, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0), (22050, 0) ]); // Low Pass Simper SVF @ 0Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 0.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[1, 5, 10, 100, 1000, 4000, 12000, 22050, 22051], &fft[..]), vec![ (0, 68), (1, 0), (5, 0), (10, 4), (100, 0), (1000, 0), (4000, 0), (12000, 0), (22050, 0) ]); } #[test] fn check_node_sfilter_simpersvf_highpass() { let (mut matrix, mut node_exec) = setup_sfilter_matrix(); // High Pass Simper SVF @ 1000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 1000.0, 1.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 0), (500, 0), (700, 30), (900, 220), (1000, 80), (1500, 30), (2000, 20), (3000, 20), (4000, 10) ]); // High Pass Simper SVF @ 1000Hz RES=0.5 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 1000.0, 0.5); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 0), (500, 0), (700, 20), (900, 30), (1000, 30), (1500, 20), (2000, 20), (3000, 20), (4000, 20) ]); // High Pass Simper SVF @ 1000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 1000.0, 0.0); assert_eq!( avg_fft_freqs(10.0, &[ 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000 ], &fft[..]), vec![ (0, 0), (500, 0), (700, 10), (900, 10), (1000, 20), (1500, 20), (2000, 20), (3000, 20), (4000, 10) ]); // High Pass Simper SVF @ 4000Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 4000.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 0), (500, 0), (1000, 0), (2000, 20), (3500, 320), (4000, 200), (5000, 40), (6000, 28), (8000, 20) ]); // High Pass Simper SVF @ 4000Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 4000.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[ 100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000 ], &fft[..]), vec![ (0, 0), (100, 0), (500, 0), (1000, 0), (2000, 8), (3500, 12), (4000, 16), (5000, 16), (6000, 20), (8000, 20) ]); // High Pass Simper SVF @ 22050Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 22050.0, 0.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 8), (4000, 24), (12000, 32), (16000, 40), (20000, 40) ]); // High Pass Simper SVF @ 22050Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 22050.0, 1.0); assert_eq!( avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![ (0, 0), (100, 0), (1000, 0), (4000, 8), (12000, 144), (16000, 192), (20000, 48) ]); // High Pass Simper SVF @ 0Hz RES=0.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 0.0, 0.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 52), (10, 12), (100, 20), (1000, 16), (4000, 16), (12000, 16) ]); // High Pass Simper SVF @ 0Hz RES=1.0 let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 0.0, 1.0); assert_eq!( avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![ (0, 112), (10, 36), (100, 16), (1000, 20), (4000, 16), (12000, 20) ]); }