// Copyright (c) 2021 Weird Constructor // This file is a part of HexoDSP. Released under GPL-3.0-or-later. // See README.md and COPYING for details. use crate::nodes::{NodeAudioContext, NodeExecContext}; use crate::dsp::biquad::Oversampling; use crate::dsp::helpers::{quicker_tanh, f_distort, f_fold_distort}; use crate::dsp::{ NodeId, SAtom, ProcBuf, DspNode, LedPhaseVals, NodeContext, GraphAtomData, GraphFun, }; #[macro_export] macro_rules! fa_vosc_ovr { ($formatter: expr, $v: expr, $denorm_v: expr) => { { let s = match ($v.round() as usize) { 0 => "Off", 1 => "On", _ => "?", }; write!($formatter, "{}", s) } } } #[macro_export] macro_rules! fa_vosc_dist { ($formatter: expr, $v: expr, $denorm_v: expr) => { { let s = match ($v.round() as usize) { 0 => "Off", 1 => "tanh", 2 => "?!?", 3 => "fold", _ => "?", }; write!($formatter, "{}", s) } } } #[inline] fn apply_distortion(s: f32, damt: f32, dist_type: u8) -> f32 { match dist_type { 1 => (damt.clamp(0.01, 1.0) * 100.0 * s).tanh(), 2 => f_distort(1.0, damt * damt * damt * 1000.0, s), 3 => { let damt = damt.clamp(0.0, 0.99); let damt = 1.0 - damt * damt; f_fold_distort(1.0, damt, s) * (1.0 / damt) }, _ => s, } } const OVERSAMPLING : usize = 4; /// A simple amplifier #[derive(Debug, Clone)] pub struct VOsc { // osc: PolyBlepOscillator, israte: f32, phase: f32, oversampling: Box>, } impl VOsc { pub fn new(nid: &NodeId) -> Self { let init_phase = nid.init_phase(); Self { israte: 1.0 / 44100.0, phase: init_phase, oversampling: Box::new(Oversampling::new()), } } pub const freq : &'static str = "VOsc freq\nBase frequency of the oscillator.\n\nRange: (-1..1)\n"; pub const det : &'static str = "VOsc det\nDetune the oscillator in semitones and cents. \ the input of this value is rounded to semitones on coarse input. \ Fine input lets you detune in cents (rounded). \ A signal sent to this port is not rounded.\n\ Note: The signal input allows detune +-10 octaves.\ \nRange: (Knob -0.2 .. 0.2) / (Signal -1.0 .. 1.0)\n"; pub const d : &'static str = "VOsc d\n\nRange: (0..1)\n"; pub const v : &'static str = "VOsc v\n\nRange: (0..1)\n"; pub const vs : &'static str = "VOsc vs\nScaling factor for 'v'.\nRange: (0..1)\n"; pub const dist : &'static str = "VOsc dist\nDistortion."; pub const damt : &'static str = "VOsc damt\nDistortion amount."; pub const ovr : &'static str = "VOsc ovr\nEnable/Disable oversampling."; pub const wtype : &'static str = "VOsc wtype\nWaveform type\nAvailable waveforms:\n\ Sin - Sine Waveform\n\ Tri - Triangle Waveform\n\ Saw - Sawtooth Waveform\n\ Pulse - Pulse Waveform with configurable pulse width"; pub const sig : &'static str = "VOsc sig\nOscillator output\nRange: (-1..1)\n"; pub const DESC : &'static str = r#"V Oscillator A vector phase shaping oscillator, to create interesting waveforms and ways to manipulate them. "#; pub const HELP : &'static str = r#"VOsc - Vector Phase Shaping Oscillator A vector phase shaping oscillator, to create interesting waveforms and ways to manipulate them. "#; } #[inline] fn s(p: f32) -> f32 { -(std::f32::consts::TAU * p).cos() } #[inline] fn phi_vps(x: f32, v: f32, d: f32) -> f32 { if x < d { (v * x) / d } else { v + ((1.0 - v) * (x - d))/(1.0 - d) } } impl DspNode for VOsc { fn outputs() -> usize { 1 } fn set_sample_rate(&mut self, srate: f32) { self.israte = 1.0 / (srate * (OVERSAMPLING as f32)); self.oversampling.set_sample_rate(srate); } fn reset(&mut self) { self.phase = 0.0; self.oversampling.reset(); // self.osc.reset(); } #[inline] fn process( &mut self, ctx: &mut T, _ectx: &mut NodeExecContext, _nctx: &NodeContext, atoms: &[SAtom], inputs: &[ProcBuf], outputs: &mut [ProcBuf], ctx_vals: LedPhaseVals) { use crate::dsp::{out, inp, denorm, denorm_offs, at}; let freq = inp::VOsc::freq(inputs); let det = inp::VOsc::det(inputs); let d = inp::VOsc::d(inputs); let v = inp::VOsc::v(inputs); let vs = inp::VOsc::vs(inputs); let damt = inp::VOsc::damt(inputs); let out = out::VOsc::sig(outputs); let ovr = at::VOsc::ovr(atoms); let dist = at::VOsc::dist(atoms); let israte = self.israte; let dist = dist.i() as u8; let oversample = ovr.i() == 1; if oversample { for frame in 0..ctx.nframes() { let freq = denorm_offs::VOsc::freq(freq, det.read(frame), frame); let v = denorm::VOsc::v(v, frame).clamp(0.0, 1.0); let d = denorm::VOsc::d(d, frame).clamp(0.0, 1.0); let vs = denorm::VOsc::vs(vs, frame).clamp(0.0, 20.0); let damt = denorm::VOsc::damt(damt, frame).clamp(0.0, 1.0); let overbuf = self.oversampling.resample_buffer(); for b in overbuf { let s = s(phi_vps(self.phase, v + vs, d)); *b = apply_distortion(s, damt, dist); self.phase += freq * israte; self.phase = self.phase.fract(); } out.write(frame, self.oversampling.downsample()); } } else { for frame in 0..ctx.nframes() { let freq = denorm_offs::VOsc::freq(freq, det.read(frame), frame); let v = denorm::VOsc::v(v, frame).clamp(0.0, 1.0); let d = denorm::VOsc::d(d, frame).clamp(0.0, 1.0); let vs = denorm::VOsc::vs(vs, frame).clamp(0.0, 20.0); let damt = denorm::VOsc::damt(damt, frame).clamp(0.0, 1.0); let s = s(phi_vps(self.phase, v + vs, d)); let s = apply_distortion(s, damt, dist); out.write(frame, s); self.phase += freq * (israte * (OVERSAMPLING as f32)); self.phase = self.phase.fract(); } } ctx_vals[0].set(out.read(ctx.nframes() - 1)); } fn graph_fun() -> Option { let israte = 1.0 / 128.0; Some(Box::new(move |gd: &dyn GraphAtomData, _init: bool, x: f32, _xn: f32| -> f32 { let v = NodeId::VOsc(0).inp_param("v").unwrap().inp(); let vs = NodeId::VOsc(0).inp_param("vs").unwrap().inp(); let d = NodeId::VOsc(0).inp_param("d").unwrap().inp(); let damt = NodeId::VOsc(0).inp_param("damt").unwrap().inp(); let dist = NodeId::VOsc(0).inp_param("dist").unwrap().inp(); let v = gd.get_denorm(v as u32).clamp(0.0, 1.0); let d = gd.get_denorm(d as u32).clamp(0.0, 1.0); let vs = gd.get_denorm(vs as u32).clamp(0.0, 20.0); let damt = gd.get_denorm(damt as u32); let dist = gd.get(dist as u32).map(|a| a.i()).unwrap_or(0); let s = s(phi_vps(x, v + vs, d)); let s = apply_distortion(s, damt, dist as u8); (s + 1.0) * 0.5 })) } }