// Copyright (c) 2021 Weird Constructor // This file is a part of HexoDSP. Released under GPL-3.0-or-later. // See README.md and COPYING for details. use synfx_dsp::{Oversampling, apply_distortion, VPSOscillator}; use crate::dsp::{ DspNode, GraphAtomData, GraphFun, LedPhaseVals, NodeContext, NodeId, ProcBuf, SAtom, }; use crate::nodes::{NodeAudioContext, NodeExecContext}; #[macro_export] macro_rules! fa_vosc_ovrsmpl { ($formatter: expr, $v: expr, $denorm_v: expr) => {{ let s = match ($v.round() as usize) { 0 => "Off", 1 => "On", _ => "?", }; write!($formatter, "{}", s) }}; } const OVERSAMPLING: usize = 4; /// A simple amplifier #[derive(Debug, Clone)] pub struct VOsc { israte: f32, osc: VPSOscillator, oversampling: Box>, } impl VOsc { pub fn new(nid: &NodeId) -> Self { let init_phase = nid.init_phase(); Self { israte: 1.0 / 44100.0, osc: VPSOscillator::new(init_phase), oversampling: Box::new(Oversampling::new()), } } pub const freq: &'static str = "VOsc freq\nBase frequency of the oscillator.\n\nRange: (-1..1)\n"; pub const det: &'static str = "VOsc det\nDetune the oscillator in semitones and cents. \ the input of this value is rounded to semitones on coarse input. \ Fine input lets you detune in cents (rounded). \ A signal sent to this port is not rounded.\n\ Note: The signal input allows detune +-10 octaves.\ \nRange: (Knob -0.2 .. 0.2) / (Signal -1.0 .. 1.0)\n"; pub const d: &'static str = "VOsc d\nThis is the horzontal bending point of the waveform. \ It has a similar effect that pulse width settings have on other \ oscillators. Make sure to try modulating this parameter at audio rate!\ \nRange: (0..1)\n"; pub const v: &'static str = "VOsc v\nThis is the vertical bending point of the waveform. \ You can adjust the effect that 'd' has on the waveform with this \ parameter. Make sure to try to modulate this parameter at audio rate!\ \nRange: (0..1)\n"; pub const vs: &'static str = "VOsc vs\nScaling factor for 'v'. If you increase this beyond 1.0, \ you will hear formant like sounds from the oscillator. Try adjusting \ 'd' to move the formants around.\nRange: (0..1)\n"; pub const dist: &'static str = "VOsc dist\nA collection of waveshaper/distortions to choose from."; pub const damt: &'static str = "VOsc damt\nDistortion amount.\nRange: (0..1)\n"; pub const ovrsmpl: &'static str = "VOsc ovrsmpl\nEnable/Disable oversampling."; pub const sig: &'static str = "VOsc sig\nOscillator output\nRange: (-1..1)\n"; pub const DESC: &'static str = r#"V Oscillator A vector phase shaping oscillator, to create interesting waveforms and ways to manipulate them. It has two parameters ('v' and 'd') to shape the phase of the sinusoid wave, and a 'vs' parameter to add extra spice. Distortion can beef up the oscillator output and you can apply oversampling. "#; pub const HELP: &'static str = r#"VOsc - Vector Phase Shaping Oscillator A vector phase shaping oscillator, to create interesting waveforms and ways to manipulate them. It has two parameters ('v' and 'd') to shape the phase of the sinusoid wave, and a third parameter 'vs' to add extra spice. With distortion you can beef up the oscillator output even more and to make it more harmonic you can apply oversampling. "#; } impl DspNode for VOsc { fn outputs() -> usize { 1 } fn set_sample_rate(&mut self, srate: f32) { self.israte = 1.0 / (srate * (OVERSAMPLING as f32)); self.oversampling.set_sample_rate(srate); } fn reset(&mut self) { self.oversampling.reset(); self.osc.reset(); } #[inline] fn process( &mut self, ctx: &mut T, _ectx: &mut NodeExecContext, _nctx: &NodeContext, atoms: &[SAtom], inputs: &[ProcBuf], outputs: &mut [ProcBuf], ctx_vals: LedPhaseVals, ) { use crate::dsp::{at, denorm, denorm_offs, inp, out}; let freq = inp::VOsc::freq(inputs); let det = inp::VOsc::det(inputs); let d = inp::VOsc::d(inputs); let v = inp::VOsc::v(inputs); let vs = inp::VOsc::vs(inputs); let damt = inp::VOsc::damt(inputs); let out = out::VOsc::sig(outputs); let ovrsmpl = at::VOsc::ovrsmpl(atoms); let dist = at::VOsc::dist(atoms); let israte = self.israte; let dist = dist.i() as u8; let oversample = ovrsmpl.i() == 1; let osc = &mut self.osc; if oversample { for frame in 0..ctx.nframes() { let freq = denorm_offs::VOsc::freq(freq, det.read(frame), frame); let v = denorm::VOsc::v(v, frame).clamp(0.0, 1.0); let d = denorm::VOsc::d(d, frame).clamp(0.0, 1.0); let vs = denorm::VOsc::vs(vs, frame).clamp(0.0, 20.0); let damt = denorm::VOsc::damt(damt, frame).clamp(0.0, 1.0); let v = VPSOscillator::limit_v(d, v + vs); let overbuf = self.oversampling.resample_buffer(); for b in overbuf { let s = osc.next(freq, israte, d, v); *b = apply_distortion(s, damt, dist); } out.write(frame, self.oversampling.downsample()); } } else { for frame in 0..ctx.nframes() { let freq = denorm_offs::VOsc::freq(freq, det.read(frame), frame); let v = denorm::VOsc::v(v, frame).clamp(0.0, 1.0); let d = denorm::VOsc::d(d, frame).clamp(0.0, 1.0); let vs = denorm::VOsc::vs(vs, frame).clamp(0.0, 20.0); let damt = denorm::VOsc::damt(damt, frame).clamp(0.0, 1.0); let v = VPSOscillator::limit_v(d, v + vs); let s = osc.next(freq, israte * (OVERSAMPLING as f32), d, v); let s = apply_distortion(s, damt, dist); out.write(frame, s); } } ctx_vals[0].set(out.read(ctx.nframes() - 1)); } fn graph_fun() -> Option { let mut osc = VPSOscillator::new(0.0); let israte = 1.0 / 128.0; Some(Box::new(move |gd: &dyn GraphAtomData, init: bool, _x: f32, _xn: f32| -> f32 { if init { osc.reset(); } let v = NodeId::VOsc(0).inp_param("v").unwrap().inp(); let vs = NodeId::VOsc(0).inp_param("vs").unwrap().inp(); let d = NodeId::VOsc(0).inp_param("d").unwrap().inp(); let damt = NodeId::VOsc(0).inp_param("damt").unwrap().inp(); let dist = NodeId::VOsc(0).inp_param("dist").unwrap().inp(); let v = gd.get_denorm(v as u32).clamp(0.0, 1.0); let d = gd.get_denorm(d as u32).clamp(0.0, 1.0); let vs = gd.get_denorm(vs as u32).clamp(0.0, 20.0); let damt = gd.get_denorm(damt as u32); let dist = gd.get(dist as u32).map(|a| a.i()).unwrap_or(0); let v = VPSOscillator::limit_v(d, v + vs); let s = osc.next(1.0, israte, d, v); let s = apply_distortion(s, damt, dist as u8); (s + 1.0) * 0.5 })) } }