HexoDSP/src/dsp/node_vosc.rs
2021-08-05 06:57:31 +02:00

268 lines
8.3 KiB
Rust

// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of HexoDSP. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
use crate::nodes::{NodeAudioContext, NodeExecContext};
use crate::dsp::biquad::Oversampling;
use crate::dsp::helpers::{quicker_tanh, f_distort, f_fold_distort};
use crate::dsp::{
NodeId, SAtom, ProcBuf, DspNode, LedPhaseVals, NodeContext,
GraphAtomData, GraphFun,
};
#[macro_export]
macro_rules! fa_vosc_ovrsmpl { ($formatter: expr, $v: expr, $denorm_v: expr) => { {
let s =
match ($v.round() as usize) {
0 => "Off",
1 => "On",
_ => "?",
};
write!($formatter, "{}", s)
} } }
#[macro_export]
macro_rules! fa_vosc_dist { ($formatter: expr, $v: expr, $denorm_v: expr) => { {
let s =
match ($v.round() as usize) {
0 => "Off",
1 => "tanh",
2 => "?!?",
3 => "fold",
_ => "?",
};
write!($formatter, "{}", s)
} } }
#[inline]
fn apply_distortion(s: f32, damt: f32, dist_type: u8) -> f32 {
match dist_type {
1 => (damt.clamp(0.01, 1.0) * 100.0 * s).tanh(),
2 => f_distort(1.0, damt * damt * damt * 1000.0, s),
3 => {
let damt = damt.clamp(0.0, 0.99);
let damt = 1.0 - damt * damt;
f_fold_distort(1.0, damt, s) * (1.0 / damt)
},
_ => s,
}
}
const OVERSAMPLING : usize = 4;
/// A simple amplifier
#[derive(Debug, Clone)]
pub struct VOsc {
// osc: PolyBlepOscillator,
israte: f32,
phase: f32,
oversampling: Box<Oversampling<OVERSAMPLING>>,
}
impl VOsc {
pub fn new(nid: &NodeId) -> Self {
let init_phase = nid.init_phase();
Self {
israte: 1.0 / 44100.0,
phase: init_phase,
oversampling: Box::new(Oversampling::new()),
}
}
pub const freq : &'static str =
"VOsc freq\nBase frequency of the oscillator.\n\nRange: (-1..1)\n";
pub const det : &'static str =
"VOsc det\nDetune the oscillator in semitones and cents. \
the input of this value is rounded to semitones on coarse input. \
Fine input lets you detune in cents (rounded). \
A signal sent to this port is not rounded.\n\
Note: The signal input allows detune +-10 octaves.\
\nRange: (Knob -0.2 .. 0.2) / (Signal -1.0 .. 1.0)\n";
pub const d : &'static str =
"VOsc d\n\nRange: (0..1)\n";
pub const v : &'static str =
"VOsc v\n\nRange: (0..1)\n";
pub const vs : &'static str =
"VOsc vs\nScaling factor for 'v'.\nRange: (0..1)\n";
pub const dist : &'static str =
"VOsc dist\nDistortion.";
pub const damt : &'static str =
"VOsc damt\nDistortion amount.";
pub const ovrsmpl : &'static str =
"VOsc ovrsmpl\nEnable/Disable oversampling.";
pub const wtype : &'static str =
"VOsc wtype\nWaveform type\nAvailable waveforms:\n\
Sin - Sine Waveform\n\
Tri - Triangle Waveform\n\
Saw - Sawtooth Waveform\n\
Pulse - Pulse Waveform with configurable pulse width";
pub const sig : &'static str =
"VOsc sig\nOscillator output\nRange: (-1..1)\n";
pub const DESC : &'static str =
r#"V Oscillator
A vector phase shaping oscillator, to create interesting waveforms and
ways to manipulate them.
"#;
pub const HELP : &'static str =
r#"VOsc - Vector Phase Shaping Oscillator
A vector phase shaping oscillator, to create interesting waveforms and
ways to manipulate them.
"#;
}
#[inline]
fn s(p: f32) -> f32 {
-(std::f32::consts::TAU * p).cos()
}
#[inline]
fn phi_vps(x: f32, v: f32, d: f32) -> f32 {
if x < d {
(v * x) / d
} else {
v + ((1.0 - v) * (x - d))/(1.0 - d)
}
}
#[inline]
fn limit_v(d: f32, v: f32) -> f32 {
let delta = 0.5 - (d - 0.5).abs();
if delta < 0.05 {
let x = (0.05 - delta) * 19.99;
// println!("X: {}, d={}, v={}, delta={}", x, d, v, delta);
if d < 0.5 {
let max = 1.0 - (x * 0.5);
if v > max && v < 1.0 {
max
} else if v >= 1.0 && v < (1.0 + max) {
1.0 + max
// v.clamp(0.0, max)
} else {
v
}
} else {
if v < 1.0 {
v.clamp(x * 0.5, 1.0)
} else {
v
}
}
} else {
v
}
}
impl DspNode for VOsc {
fn outputs() -> usize { 1 }
fn set_sample_rate(&mut self, srate: f32) {
self.israte = 1.0 / (srate * (OVERSAMPLING as f32));
self.oversampling.set_sample_rate(srate);
}
fn reset(&mut self) {
self.phase = 0.0;
self.oversampling.reset();
// self.osc.reset();
}
#[inline]
fn process<T: NodeAudioContext>(
&mut self, ctx: &mut T, _ectx: &mut NodeExecContext,
_nctx: &NodeContext,
atoms: &[SAtom], inputs: &[ProcBuf],
outputs: &mut [ProcBuf], ctx_vals: LedPhaseVals)
{
use crate::dsp::{out, inp, denorm, denorm_offs, at};
let freq = inp::VOsc::freq(inputs);
let det = inp::VOsc::det(inputs);
let d = inp::VOsc::d(inputs);
let v = inp::VOsc::v(inputs);
let vs = inp::VOsc::vs(inputs);
let damt = inp::VOsc::damt(inputs);
let out = out::VOsc::sig(outputs);
let ovrsmpl = at::VOsc::ovrsmpl(atoms);
let dist = at::VOsc::dist(atoms);
let israte = self.israte;
let dist = dist.i() as u8;
let oversample = ovrsmpl.i() == 1;
if oversample {
for frame in 0..ctx.nframes() {
let freq = denorm_offs::VOsc::freq(freq, det.read(frame), frame);
let v = denorm::VOsc::v(v, frame).clamp(0.0, 1.0);
let d = denorm::VOsc::d(d, frame).clamp(0.0, 1.0);
let vs = denorm::VOsc::vs(vs, frame).clamp(0.0, 20.0);
let damt = denorm::VOsc::damt(damt, frame).clamp(0.0, 1.0);
let v = limit_v(d, v + vs);
let overbuf = self.oversampling.resample_buffer();
for b in overbuf {
let s = s(phi_vps(self.phase, v, d));
*b = apply_distortion(s, damt, dist);
self.phase += freq * israte;
self.phase = self.phase.fract();
}
out.write(frame, self.oversampling.downsample());
}
} else {
for frame in 0..ctx.nframes() {
let freq = denorm_offs::VOsc::freq(freq, det.read(frame), frame);
let v = denorm::VOsc::v(v, frame).clamp(0.0, 1.0);
let d = denorm::VOsc::d(d, frame).clamp(0.0, 1.0);
let vs = denorm::VOsc::vs(vs, frame).clamp(0.0, 20.0);
let damt = denorm::VOsc::damt(damt, frame).clamp(0.0, 1.0);
let v = limit_v(d, v + vs);
let s = s(phi_vps(self.phase, v, d));
let s = apply_distortion(s, damt, dist);
out.write(frame, s);
self.phase += freq * (israte * (OVERSAMPLING as f32));
self.phase = self.phase.fract();
}
}
ctx_vals[0].set(out.read(ctx.nframes() - 1));
}
fn graph_fun() -> Option<GraphFun> {
let israte = 1.0 / 128.0;
Some(Box::new(move |gd: &dyn GraphAtomData, _init: bool, x: f32, _xn: f32| -> f32 {
let v = NodeId::VOsc(0).inp_param("v").unwrap().inp();
let vs = NodeId::VOsc(0).inp_param("vs").unwrap().inp();
let d = NodeId::VOsc(0).inp_param("d").unwrap().inp();
let damt = NodeId::VOsc(0).inp_param("damt").unwrap().inp();
let dist = NodeId::VOsc(0).inp_param("dist").unwrap().inp();
let v = gd.get_denorm(v as u32).clamp(0.0, 1.0);
let d = gd.get_denorm(d as u32).clamp(0.0, 1.0);
let vs = gd.get_denorm(vs as u32).clamp(0.0, 20.0);
let damt = gd.get_denorm(damt as u32);
let dist = gd.get(dist as u32).map(|a| a.i()).unwrap_or(0);
let v = limit_v(d, v + vs);
let s = s(phi_vps(x, v, d));
let s = apply_distortion(s, damt, dist as u8);
(s + 1.0) * 0.5
}))
}
}