HexoDSP/src/dsp/node_smap.rs
2021-08-04 03:58:43 +02:00

199 lines
6.6 KiB
Rust

// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of HexoDSP. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
use crate::nodes::{NodeAudioContext, NodeExecContext};
use crate::dsp::{NodeId, SAtom, ProcBuf, DspNode, LedPhaseVals, NodeContext};
#[macro_export]
macro_rules! fa_smap_clip { ($formatter: expr, $v: expr, $denorm_v: expr) => { {
let s =
match ($v.round() as usize) {
0 => "Off",
1 => "Clip",
_ => "?",
};
write!($formatter, "{}", s)
} } }
#[macro_export]
macro_rules! fa_smap_mode { ($formatter: expr, $v: expr, $denorm_v: expr) => { {
let s =
match ($v.round() as usize) {
0 => "Unipolar",
1 => "Bipolar",
2 => "UniInv",
3 => "BiInv",
_ => "",
};
write!($formatter, "{}", s)
} } }
/// A simple amplifier
#[derive(Debug, Clone)]
pub struct SMap {
}
impl SMap {
pub fn new(_nid: &NodeId) -> Self {
Self {
}
}
pub const inp : &'static str =
"SMap inp\nSignal input\nRange: (-1..1)\n";
pub const min : &'static str =
"SMap min\nMinimum of the output signal range.\nRange: (0..1)\n";
pub const max : &'static str =
"SMap max\nMaximum of the output signal range.\nRange: (0..1)\n";
pub const clip : &'static str =
"SMap clip\nThe 'clip' mode allows you to limit the output \
exactly to the 'min'/'max' range. If this is off, the output \
may be outside the output signal range.";
pub const mode : &'static str =
"SMap mode\nThis mode defines what kind of input signal is expected \
and how it will be mapped to the output 'min'/'max' range. \
These modes are available:\
\nUnipolar (0..1) / Bipolar (-1..1)\
\nUniInv (1..0) / BiInv (1..-1)";
pub const sig : &'static str =
"SMap sig\nMapped signal output\nRange: (-1..1)\n";
pub const DESC : &'static str =
r#"Simple Signal Range Mapper
This node allows to map an unipolar (0..1) or bipolar signal (-1..1) to a defined 'min'/'max' signal range.
See also the 'Map' node for a more sophisticated version of this.
"#;
pub const HELP : &'static str =
r#"SMap - Simple Signal Range Mapper
This node allows to map an unipolar (0..1) or bipolar signal (-1..1)
to a defined 'min'/'max' signal range.
The 'clip' mode allows you to limit the output exactly to the 'min'/'max'
range. If this is off, the output may be outside the output signal
range if the input signal is outside the input signal range.
The 'input' mode allows you to choose between 4 options:
* Unipolar (0..1)
* Bipolar (-1..1)
* UniInv (1..0)
* BiInv (1..-1)
The inverse settings will map 1 to 'min' and 0 to 'max' for 'UniInv'.
And 1 to 'min' and -1 to 'max' for 'BiInv'.
For a more sophisticated version of this node see also 'Map'.
"#;
}
impl DspNode for SMap {
fn outputs() -> usize { 1 }
fn set_sample_rate(&mut self, _srate: f32) { }
fn reset(&mut self) { }
#[inline]
fn process<T: NodeAudioContext>(
&mut self, ctx: &mut T, _ectx: &mut NodeExecContext,
_nctx: &NodeContext,
atoms: &[SAtom], inputs: &[ProcBuf],
outputs: &mut [ProcBuf], ctx_vals: LedPhaseVals)
{
use crate::dsp::{out, inp, at};
let inp = inp::SMap::inp(inputs);
let min = inp::SMap::min(inputs);
let max = inp::SMap::max(inputs);
let out = out::SMap::sig(outputs);
let clip = at::SMap::clip(atoms);
let mode = at::SMap::mode(atoms);
let mut last_val = 0.0;
match (mode.i(), clip.i()) {
(0, 0) => {
for frame in 0..ctx.nframes() {
let s = inp.read(frame);
let min = min.read(frame);
let max = max.read(frame);
last_val = s;
out.write(frame, min + (max - min) * s);
}
},
(0, 1) => {
for frame in 0..ctx.nframes() {
let s = inp.read(frame);
let min = min.read(frame);
let max = max.read(frame);
let s = s.clamp(0.0, 1.0);
last_val = s;
out.write(frame, min + (max - min) * s);
}
},
(1, 0) => {
for frame in 0..ctx.nframes() {
let s = inp.read(frame);
let min = min.read(frame);
let max = max.read(frame);
let s = (s + 1.0) * 0.5;
out.write(frame, min + (max - min) * s);
}
},
(1, 1) => {
for frame in 0..ctx.nframes() {
let s = inp.read(frame);
let min = min.read(frame);
let max = max.read(frame);
let s = ((s + 1.0) * 0.5).clamp(0.0, 1.0);
out.write(frame, min + (max - min) * s);
}
},
(2, 0) => {
for frame in 0..ctx.nframes() {
let s = inp.read(frame);
let min = min.read(frame);
let max = max.read(frame);
let s = 1.0 - s;
last_val = s;
out.write(frame, min + (max - min) * s);
}
},
(2, 1) => {
for frame in 0..ctx.nframes() {
let s = inp.read(frame);
let min = min.read(frame);
let max = max.read(frame);
let s = 1.0 - s.clamp(0.0, 1.0);
last_val = s;
out.write(frame, min + (max - min) * s);
}
},
(3, 0) => {
for frame in 0..ctx.nframes() {
let s = inp.read(frame);
let min = min.read(frame);
let max = max.read(frame);
let s = 1.0 - ((s + 1.0) * 0.5);
out.write(frame, min + (max - min) * s);
}
},
(3, 1) => {
for frame in 0..ctx.nframes() {
let s = inp.read(frame);
let min = min.read(frame);
let max = max.read(frame);
let s = 1.0 - ((s + 1.0) * 0.5).clamp(0.0, 1.0);
out.write(frame, min + (max - min) * s);
}
},
_ => {},
}
ctx_vals[0].set(last_val);
}
}