HexoDSP/src/matrix.rs
2021-08-04 03:58:43 +02:00

1548 lines
50 KiB
Rust

// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of HexoDSP. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
use crate::nodes::{
NodeConfigurator,
NodeGraphOrdering,
NodeProg,
MAX_ALLOCATED_NODES
};
use crate::dsp::{NodeInfo, NodeId, ParamId, SAtom};
pub use crate::CellDir;
pub use crate::nodes::MinMaxMonitorSamples;
pub use crate::monitor::MON_SIG_CNT;
use crate::matrix_repr::*;
use crate::dsp::tracker::PatternData;
use std::collections::{HashMap, HashSet};
/// This is a cell/tile of the hexagonal [Matrix].
///
/// The [Matrix] stores it to keep track of the graphical representation
/// of the hexagonal tilemap. Using [Matrix::place] you can place new cells.
///
///```
/// use hexodsp::*;
///
/// let (node_conf, mut node_exec) = new_node_engine();
/// let mut matrix = Matrix::new(node_conf, 3, 3);
///
/// matrix.place(
/// 2, 2,
/// Cell::empty(NodeId::Sin(0))
/// .input(Some(0), None, None)
/// .out(None, None, Some(0)));
///
/// matrix.sync().unwrap();
///```
#[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd)]
pub struct Cell {
node_id: NodeId,
x: u8,
y: u8,
/// Top-Right output
out1: Option<u8>,
/// Bottom-Right output
out2: Option<u8>,
/// Bottom output
out3: Option<u8>,
/// Top input
in1: Option<u8>,
/// Top-Left input
in2: Option<u8>,
/// Bottom-Left input
in3: Option<u8>,
}
impl Cell {
/// This is the main contructor of a [Cell].
/// Empty means that there is no associated position of this cell
/// and no inputs/outputs have been assigned. Use the methods [Cell::input] and [Cell::out]
/// to assign inputs / outputs.
///
///```
/// use hexodsp::*;
///
/// let some_cell =
/// Cell::empty(NodeId::Sin(0))
/// .input(None, Some(0), Some(0))
/// .out(None, Some(0), Some(0));
///```
pub fn empty(node_id: NodeId) -> Self {
Self {
node_id,
x: 0,
y: 0,
out1: None,
out2: None,
out3: None,
in1: None,
in2: None,
in3: None,
}
}
/// Returns a serializable representation of this [Matrix] [Cell].
///
/// See also [CellRepr].
///
///```
/// use hexodsp::*;
///
/// let some_cell =
/// Cell::empty(NodeId::Sin(0))
/// .input(None, Some(0), Some(0))
/// .out(None, Some(0), Some(0));
///
/// let repr = some_cell.to_repr();
/// assert_eq!(
/// repr.serialize().to_string(),
/// "[\"sin\",0,0,0,[-1,\"freq\",\"freq\"],[-1,\"sig\",\"sig\"]]");
///```
pub fn to_repr(&self) -> CellRepr {
CellRepr {
node_id: self.node_id,
x: self.x as usize,
y: self.y as usize,
out: [
self.out1.map(|v| v as i16).unwrap_or(-1),
self.out2.map(|v| v as i16).unwrap_or(-1),
self.out3.map(|v| v as i16).unwrap_or(-1)
],
inp: [
self.in1.map(|v| v as i16).unwrap_or(-1),
self.in2.map(|v| v as i16).unwrap_or(-1),
self.in3.map(|v| v as i16).unwrap_or(-1)
],
}
}
pub fn from_repr(repr: &CellRepr) -> Self {
Self {
node_id: repr.node_id,
x: repr.x as u8,
y: repr.y as u8,
out1: if repr.out[0] < 0 { None }
else { Some(repr.out[0] as u8) },
out2: if repr.out[1] < 0 { None }
else { Some(repr.out[1] as u8) },
out3: if repr.out[2] < 0 { None }
else { Some(repr.out[2] as u8) },
in1: if repr.inp[0] < 0 { None }
else { Some(repr.inp[0] as u8) },
in2: if repr.inp[1] < 0 { None }
else { Some(repr.inp[1] as u8) },
in3: if repr.inp[2] < 0 { None }
else { Some(repr.inp[2] as u8) },
}
}
pub fn with_pos_of(&self, other: Cell) -> Self {
let mut new = *self;
new.x = other.x;
new.y = other.y;
new
}
pub fn is_empty(&self) -> bool { self.node_id == NodeId::Nop }
pub fn node_id(&self) -> NodeId { self.node_id }
pub fn set_node_id(&mut self, new_id: NodeId) {
self.node_id = new_id;
// With a new node id, we also need new I/Os:
self.in1 = None;
self.in2 = None;
self.in3 = None;
self.out1 = None;
self.out2 = None;
self.out3 = None;
}
pub fn label<'a>(&self, buf: &'a mut [u8]) -> Option<&'a str> {
use std::io::Write;
let mut cur = std::io::Cursor::new(buf);
if self.node_id == NodeId::Nop {
return None;
}
// let node_info = infoh.from_node_id(self.node_id);
match write!(cur, "{}", self.node_id) {
Ok(_) => {
let len = cur.position() as usize;
Some(
std::str::from_utf8(&(cur.into_inner())[0..len])
.unwrap())
},
Err(_) => None,
}
}
pub fn pos(&self) -> (usize, usize) {
(self.x as usize, self.y as usize)
}
pub fn offs_dir(&mut self, dir: CellDir) -> bool {
if let Some(new_pos) =
dir.offs_pos((self.x as usize, self.y as usize))
{
self.x = new_pos.0 as u8;
self.y = new_pos.1 as u8;
true
}
else
{
false
}
}
pub fn has_dir_set(&self, dir: CellDir) -> bool {
match dir {
CellDir::TR => self.out1.is_some(),
CellDir::BR => self.out2.is_some(),
CellDir::B => self.out3.is_some(),
CellDir::BL => self.in3.is_some(),
CellDir::TL => self.in2.is_some(),
CellDir::T => self.in1.is_some(),
CellDir::C => false,
}
}
pub fn local_port_idx(&self, dir: CellDir) -> Option<u8> {
match dir {
CellDir::TR => { self.out1 },
CellDir::BR => { self.out2 },
CellDir::B => { self.out3 },
CellDir::BL => { self.in3 },
CellDir::TL => { self.in2 },
CellDir::T => { self.in1 },
CellDir::C => None,
}
}
pub fn clear_io_dir(&mut self, dir: CellDir) {
match dir {
CellDir::TR => { self.out1 = None; },
CellDir::BR => { self.out2 = None; },
CellDir::B => { self.out3 = None; },
CellDir::BL => { self.in3 = None; },
CellDir::TL => { self.in2 = None; },
CellDir::T => { self.in1 = None; },
CellDir::C => {
self.out1 = None;
self.out2 = None;
self.out3 = None;
self.in1 = None;
self.in2 = None;
self.in3 = None;
},
}
}
pub fn set_io_dir(&mut self, dir: CellDir, idx: usize) {
match dir {
CellDir::TR => { self.out1 = Some(idx as u8); },
CellDir::BR => { self.out2 = Some(idx as u8); },
CellDir::B => { self.out3 = Some(idx as u8); },
CellDir::BL => { self.in3 = Some(idx as u8); },
CellDir::TL => { self.in2 = Some(idx as u8); },
CellDir::T => { self.in1 = Some(idx as u8); },
CellDir::C => {},
}
}
pub fn input(mut self, i1: Option<u8>, i2: Option<u8>, i3: Option<u8>) -> Self {
self.in1 = i1;
self.in2 = i2;
self.in3 = i3;
self
}
pub fn out(mut self, o1: Option<u8>, o2: Option<u8>, o3: Option<u8>) -> Self {
self.out1 = o1;
self.out2 = o2;
self.out3 = o3;
self
}
/// Finds the first free input (one without an adjacent cell). If any free input
/// has an assigned input, that edge is returned.
/// With `dir` you can specify input with `CellDir::T`, output with `CellDir::B`
/// and any with `CellDir::C`.
pub fn find_first_adjacent_free(&self, m: &mut Matrix, dir: CellDir) -> Option<(CellDir, Option<u8>)> {
let mut free_ports = vec![];
let options : &[CellDir] =
if dir == CellDir::C {
&[CellDir::T, CellDir::TL, CellDir::BL,
CellDir::TR, CellDir::BR, CellDir::B]
} else if dir.is_input() {
&[CellDir::T, CellDir::TL, CellDir::BL]
} else {
&[CellDir::TR, CellDir::BR, CellDir::B]
};
for dir in options {
if let Some(pos) = dir.offs_pos((self.x as usize, self.y as usize)) {
if m.get(pos.0, pos.1)
.map(|c| c.is_empty())
.unwrap_or(false)
{
free_ports.push(dir);
}
}
}
for in_dir in &free_ports {
if self.has_dir_set(**in_dir) {
return Some((**in_dir, self.local_port_idx(**in_dir)));
}
}
if free_ports.len() > 0 {
Some((*free_ports[0], None))
} else {
None
}
}
/// Finds the all adjacent free places around the current cell.
/// With `dir` you can specify input with `CellDir::T`, output with `CellDir::B`
/// and any with `CellDir::C`.
pub fn find_all_adjacent_free(&self, m: &mut Matrix, dir: CellDir) -> Vec<(CellDir, (usize, usize))> {
let mut free_ports = vec![];
let options : &[CellDir] =
if dir == CellDir::C {
&[CellDir::T, CellDir::TL, CellDir::BL,
CellDir::TR, CellDir::BR, CellDir::B]
} else if dir.is_input() {
&[CellDir::T, CellDir::TL, CellDir::BL]
} else {
&[CellDir::TR, CellDir::BR, CellDir::B]
};
for dir in options {
if let Some(pos) = dir.offs_pos((self.x as usize, self.y as usize)) {
if m.get(pos.0, pos.1)
.map(|c| c.is_empty())
.unwrap_or(false)
{
free_ports.push((*dir, pos));
}
}
}
free_ports.to_vec()
}
/// If the port is connected, it will return the position of the other cell.
pub fn is_port_dir_connected(&self, m: &mut Matrix, dir: CellDir) -> Option<(usize, usize)> {
if self.has_dir_set(dir) {
if let Some(new_pos) =
dir.offs_pos((self.x as usize, self.y as usize))
{
if let Some(dst_cell) = m.get(new_pos.0, new_pos.1) {
if dst_cell.has_dir_set(dir.flip()) {
return Some(new_pos);
}
}
}
}
None
}
}
use std::sync::{Arc, Mutex};
/// To report back cycle errors from [Matrix::check] and [Matrix::sync].
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum MatrixError {
CycleDetected,
DuplicatedInput {
output1: (NodeId, u8),
output2: (NodeId, u8),
},
NonEmptyCell { cell: Cell },
PosOutOfRange
}
/// An intermediate data structure to store a single edge in the [Matrix].
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct Edge {
from: NodeId,
from_out: u8,
to: NodeId,
to_input: u8,
}
pub struct Matrix {
/// The node configurator to control the backend.
config: NodeConfigurator,
/// Holds the actual 2 dimensional matrix cells in one big vector.
matrix: Vec<Cell>,
/// Width of the matrix.
w: usize,
/// Height of the matrix.
h: usize,
/// The retained data structure of the graph topology.
/// This is used by `sync()` and `check()` to determine the
/// order and cycle freeness of the graph.
/// We store it in this field, so we don't have to reallocate it
/// all the time.
graph_ordering: NodeGraphOrdering,
/// Holds a saved version of the `matrix` field
/// to roll back changes that might introduce cycles or
/// other invalid topology.
saved_matrix: Option<Vec<Cell>>,
/// Stores the edges which are extracted from the `matrix` field
/// by [Matrix::update_graph_ordering_and_edges], which is used
/// by [Matrix::sync] and [Matrix::check].
edges: Vec<Edge>,
/// Holds custom user defined properties. They are saved with
/// the [MatrixRepr] and you can set and retrieve these properties
/// using [Matrix::set_prop] and [Matrix::get_prop].
properties: HashMap<String, SAtom>,
/// Stores the [crate::dsp::ParamId] of the inputs that have an output
/// assigned to them. It's updates when [Matrix::edges] is updated and used
/// by [Matrix::param_input_is_used] to return whether a parameter is
/// controlled by some output port.
assigned_inputs: HashSet<ParamId>,
/// Holds the currently monitored cell.
monitored_cell: Cell,
/// A counter that increases for each sync(), it can be used
/// by other components of the application to detect changes in
/// the matrix to resync their own data.
gen_counter: usize,
}
unsafe impl Send for Matrix {}
impl Matrix {
pub fn new(config: NodeConfigurator, w: usize, h: usize) -> Self {
let mut matrix : Vec<Cell> = Vec::new();
matrix.resize(w * h, Cell::empty(NodeId::Nop));
Self {
monitored_cell: Cell::empty(NodeId::Nop),
gen_counter: 0,
saved_matrix: None,
graph_ordering: NodeGraphOrdering::new(),
edges: Vec::with_capacity(MAX_ALLOCATED_NODES * 2),
assigned_inputs: HashSet::new(),
properties: HashMap::new(),
config,
w,
h,
matrix,
}
}
pub fn size(&self) -> (usize, usize) { (self.w, self.h) }
pub fn unique_index_for(&self, node_id: &NodeId) -> Option<usize> {
self.config.unique_index_for(node_id)
}
pub fn info_for(&self, node_id: &NodeId) -> Option<NodeInfo> {
Some(self.config.node_by_id(&node_id)?.0.clone())
}
pub fn phase_value_for(&self, node_id: &NodeId) -> f32 {
self.config.phase_value_for(node_id)
}
pub fn led_value_for(&self, node_id: &NodeId) -> f32 {
self.config.led_value_for(node_id)
}
pub fn update_filters(&mut self) {
self.config.update_filters();
}
pub fn filtered_led_for(&mut self, ni: &NodeId) -> (f32, f32) {
self.config.filtered_led_for(ni)
}
pub fn filtered_out_fb_for(&mut self, ni: &NodeId, out: u8) -> (f32, f32) {
self.config.filtered_out_fb_for(ni, out)
}
pub fn get_pattern_data(&self, tracker_id: usize)
-> Option<Arc<Mutex<PatternData>>>
{
self.config.get_pattern_data(tracker_id)
}
/// Checks if pattern data updates need to be sent to the
/// DSP thread.
pub fn check_pattern_data(&mut self, tracker_id: usize) {
self.config.check_pattern_data(tracker_id)
}
/// Saves the state of the hexagonal grid layout.
/// This is usually used together with [Matrix::check]
/// and [Matrix::restore_matrix] to try if changes on
/// the matrix using [Matrix::place] (or other grid changing
/// functions).
///
/// It is advised to use convenience functions such as [Matrix::change_matrix].
///
/// See also [Matrix::change_matrix], [Matrix::check] and [Matrix::sync].
pub fn save_matrix(&mut self) {
let matrix = self.matrix.clone();
self.saved_matrix = Some(matrix);
}
/// Restores the previously via [Matrix::save_matrix] saved matrix.
///
/// It is advised to use convenience functions such as [Matrix::change_matrix].
///
/// See also [Matrix::change_matrix], [Matrix::check].
pub fn restore_matrix(&mut self) {
if let Some(matrix) = self.saved_matrix.take() {
self.matrix = matrix;
}
}
/// Helps encapsulating changes of the matrix and wraps them into
/// a [Matrix::save_matrix], [Matrix::check] and [Matrix::restore_matrix].
///
///```
/// use hexodsp::*;
///
/// let (node_conf, mut node_exec) = new_node_engine();
/// let mut matrix = Matrix::new(node_conf, 3, 3);
///
/// let res = matrix.change_matrix(|matrix| {
/// matrix.place(0, 1,
/// Cell::empty(NodeId::Sin(1))
/// .input(Some(0), None, None));
/// matrix.place(0, 0,
/// Cell::empty(NodeId::Sin(1))
/// .out(None, None, Some(0)));
/// });
///
/// // In this examples case there is an error, as we created
/// // a cycle:
/// assert!(res.is_err());
///```
pub fn change_matrix<F>(&mut self, mut f: F)
-> Result<(), MatrixError>
where F: FnMut(&mut Self)
{
self.save_matrix();
f(self);
if let Err(e) = self.check() {
self.restore_matrix();
Err(e)
} else {
Ok(())
}
}
/// Like [Matrix::change_matrix] but the function passed to this
/// needs to return a `Result<(), MatrixError>`.
pub fn change_matrix_err<F>(&mut self, mut f: F)
-> Result<(), MatrixError>
where F: FnMut(&mut Self) -> Result<(), MatrixError>
{
self.save_matrix();
if let Err(e) = f(self) {
self.restore_matrix();
return Err(e);
}
if let Err(e) = self.check() {
self.restore_matrix();
Err(e)
} else {
Ok(())
}
}
/// Tries to place all `cells` at once, if they are placed in empty
/// cells only! Returns an error of the destination cell is not empty
/// or out of range, or if the placement of the cluster results in any
/// other inconsistencies.
///
/// This action must be wrapped with [Matrix::change_matrix_err]!
///
/// Restores the matrix to the previous state if placing fails.
pub fn place_multiple(&mut self, cells: &[Cell]) -> Result<(), MatrixError> {
for cell in cells {
let x = cell.pos().0;
let y = cell.pos().1;
if let Some(existing) = self.get(x, y) {
if !existing.is_empty() {
return Err(MatrixError::NonEmptyCell { cell: *existing });
}
self.place(x, y, *cell);
} else {
return Err(MatrixError::PosOutOfRange);
}
}
if let Err(e) = self.check() {
Err(e)
} else {
Ok(())
}
}
/// Inserts a cell into the hexagonal grid of the matrix.
/// You have to make sure that the resulting DSP graph topology
/// does not have cycles, otherwise an upload to the DSP thread via
/// [Matrix::sync] will fail.
///
/// You can safely check the DSP topology of changes using
/// the convenience function [Matrix::change_matrix]
/// or alternatively: [Matrix::save_matrix], [Matrix::restore_matrix]
/// and [Matrix::check].
///
/// See also the example in [Matrix::change_matrix] and [Matrix::check].
pub fn place(&mut self, x: usize, y: usize, mut cell: Cell) {
cell.x = x as u8;
cell.y = y as u8;
self.matrix[x * self.h + y] = cell;
}
/// Set the cell at it's assigned position. This is basically a shorthand
/// for [Matrix::place]. As if you would call:
/// `m.place(cell.pos().0, cell.pos().1, cell)`.
pub fn place_cell(&mut self, cell: Cell) {
self.place(cell.pos().0, cell.pos().1, cell);
}
/// Clears the contents of the matrix. It's completely empty after this.
pub fn clear(&mut self) {
for cell in self.matrix.iter_mut() {
*cell = Cell::empty(NodeId::Nop);
}
self.graph_ordering.clear();
self.edges.clear();
self.assigned_inputs.clear();
self.saved_matrix = None;
self.properties.clear();
self.config.delete_nodes();
self.monitor_cell(Cell::empty(NodeId::Nop));
let _ = self.sync();
}
/// Iterates through all atoms. This is useful for reading
/// the atoms after a [MatrixRepr] has been loaded with [Matrix::from_repr].
pub fn for_each_atom<F: FnMut(usize, ParamId, &SAtom, Option<f32>)>(&self, f: F) {
self.config.for_each_param(f);
}
/// Returns the DSP graph generation, which is increased
/// after each call to [Matrix::sync].
///
/// This can be used by external components to track if they
/// should update their knowledge of the nodes in the DSP
/// graph. Such as parameter values.
///
/// HexoSynth for instance updates the UI parameters
/// by tracking this value and calling [Matrix::for_each_atom]
/// to retrieve the most current set of parameter values.
/// In case new nodes were created and their default
/// parameter/atom values were added.
pub fn get_generation(&self) -> usize { self.gen_counter }
/// Returns a serializable representation of the matrix.
/// This representation contains all parameters,
/// created nodes, connections and the tracker's pattern data.
///
///```
/// use hexodsp::*;
///
/// let (node_conf, mut _node_exec) = new_node_engine();
/// let mut matrix = Matrix::new(node_conf, 3, 3);
///
/// let sin = NodeId::Sin(2);
///
/// matrix.place(0, 0,
/// Cell::empty(sin)
/// .out(None, Some(0), None));
///
/// let freq_param = sin.inp_param("freq").unwrap();
/// matrix.set_param(freq_param, SAtom::param(-0.1));
///
/// let mut serialized = matrix.to_repr().serialize().to_string();
///
/// assert!(serialized.find("\"sin\",2,0,0,[-1,-1,-1],[-1,\"sig\",-1]").is_some());
/// assert!(serialized.find("\"freq\",-0.100").is_some());
///```
///
/// See also [MatrixRepr::serialize].
pub fn to_repr(&self) -> MatrixRepr {
let (params, atoms) = self.config.dump_param_values();
let mut cells : Vec<CellRepr> = vec![];
self.for_each(|_x, _y, cell|
if cell.node_id() != NodeId::Nop {
cells.push(cell.to_repr())
});
let mut patterns : Vec<Option<PatternRepr>> = vec![];
let mut tracker_id = 0;
while let Some(pdata) = self.get_pattern_data(tracker_id) {
patterns.push(
if pdata.lock().unwrap().is_unset() { None }
else { Some(pdata.lock().unwrap().to_repr()) });
tracker_id += 1;
}
let properties =
self.properties
.iter()
.map(|(k, v)| (k.to_string(), v.clone()))
.collect();
MatrixRepr {
cells,
params,
atoms,
patterns,
properties,
}
}
/// Loads the matrix from a previously my [Matrix::to_repr]
/// generated matrix representation.
///
/// This function will call [Matrix::sync] after loading and
/// overwriting the current matrix contents.
pub fn from_repr(&mut self, repr: &MatrixRepr) -> Result<(), MatrixError> {
self.clear();
self.config.load_dumped_param_values(
&repr.params[..],
&repr.atoms[..]);
for (key, val) in repr.properties.iter() {
self.set_prop(key, val.clone());
}
for cell_repr in repr.cells.iter() {
let cell = Cell::from_repr(cell_repr);
self.place(cell.x as usize, cell.y as usize, cell);
}
for (tracker_id, pat) in repr.patterns.iter().enumerate() {
if let Some(pat) = pat {
if let Some(pd) = self.get_pattern_data(tracker_id) {
pd.lock().unwrap().from_repr(pat);
}
}
}
self.sync()
}
/// Saves a property in the matrix, these can be retrieved
/// using [Matrix::get_prop] and are saved/loaded along with
/// the [MatrixRepr]. See also [Matrix::to_repr] and [Matrix::from_repr].
///
///```
/// use hexodsp::*;
///
/// let repr = {
/// let (node_conf, mut _node_exec) = new_node_engine();
/// let mut matrix = Matrix::new(node_conf, 3, 3);
///
/// matrix.set_prop("test", SAtom::setting(31337));
///
/// matrix.to_repr()
/// };
///
/// let (node_conf, mut _node_exec) = new_node_engine();
/// let mut matrix2 = Matrix::new(node_conf, 3, 3);
///
/// matrix2.from_repr(&repr).unwrap();
/// assert_eq!(matrix2.get_prop("test").unwrap().i(), 31337);
///```
pub fn set_prop(&mut self, key: &str, val: SAtom) {
self.properties.insert(key.to_string(), val);
}
/// Retrieves a matrix property. See also [Matrix::set_prop] for an
/// example and more information.
pub fn get_prop(&mut self, key: &str) -> Option<&SAtom> {
self.properties.get(key)
}
/// Receives the most recent data for the monitored signal at index `idx`.
/// Might introduce a short wait, because internally a mutex is still locked.
/// If this leads to stuttering in the UI, we need to change the internal
/// handling to a triple buffer.
pub fn get_minmax_monitor_samples(&mut self, idx: usize) -> &MinMaxMonitorSamples {
self.config.get_minmax_monitor_samples(idx)
}
/// Returns the currently monitored cell.
pub fn monitored_cell(&self) -> &Cell { &self.monitored_cell }
/// Sets the cell to monitor next. Please bear in mind, that you need to
/// call `sync` before retrieving the cell from the matrix, otherwise
/// the node instance might not have been created in the backend yet and
/// we can not start monitoring the cell.
pub fn monitor_cell(&mut self, cell: Cell) {
self.monitored_cell = cell;
let inputs = [
cell.in1,
cell.in2,
cell.in3,
];
let outputs = [
cell.out1,
cell.out2,
cell.out3,
];
self.config.monitor(&cell.node_id, &inputs, &outputs);
}
/// Is called by [Matrix::sync] to refresh the monitored cell.
/// In case the matrix has changed (inputs/outputs of a cell)
/// we show the current state.
///
/// Note, that if the UI actually moved a cell, it needs to
/// monitor the newly moved cell anyways.
fn remonitor_cell(&mut self) {
let m = self.monitored_cell();
if let Some(cell) = self.get(m.x as usize, m.y as usize).copied() {
self.monitor_cell(cell);
}
}
pub fn pop_error(&mut self) -> Option<String> {
self.config.pop_error()
}
/// Assign [SAtom] values to input parameters and atoms.
pub fn set_param(&mut self, param: ParamId, at: SAtom) {
self.config.set_param(param, at);
}
/// Assign or remove modulation of an input parameter.
pub fn set_param_modamt(&mut self, param: ParamId, modamt: Option<f32>)
-> Result<(), MatrixError>
{
if self.config.set_param_modamt(param, modamt) {
self.sync()
} else {
Ok(())
}
}
pub fn get_adjacent_output(&self, x: usize, y: usize, dir: CellDir)
-> Option<(NodeId, u8)>
{
if dir.is_output() {
return None;
}
let cell = self.get_adjacent(x, y, dir)?;
if cell.node_id == NodeId::Nop {
return None;
}
let cell_out =
match dir {
CellDir::T => cell.out3?,
CellDir::TL => cell.out2?,
CellDir::BL => cell.out1?,
_ => { return None; }
};
Some((cell.node_id, cell_out))
}
pub fn get_adjacent(&self, x: usize, y: usize, dir: CellDir) -> Option<&Cell> {
let offs : (i32, i32) = dir.as_offs(x);
let x = x as i32 + offs.0;
let y = y as i32 + offs.1;
if x < 0 || y < 0 || (x as usize) >= self.w || (y as usize) >= self.h {
return None;
}
Some(&self.matrix[(x as usize) * self.h + (y as usize)])
}
pub fn adjacent_edge_has_input(&self, x: usize, y: usize, edge: CellDir) -> bool {
if let Some(cell) = self.get_adjacent(x, y, edge) {
//d// println!(" ADJ CELL: {},{} ({})", cell.x, cell.y, cell.node_id());
match edge {
CellDir::TR => cell.in3.is_some(),
CellDir::BR => cell.in2.is_some(),
CellDir::B => cell.in1.is_some(),
_ => false,
}
} else {
false
}
}
pub fn for_each<F: FnMut(usize, usize, &Cell)>(&self, mut f: F) {
for x in 0..self.w {
for y in 0..self.h {
let cell = &self.matrix[x * self.h + y];
f(x, y, cell);
}
}
}
pub fn edge_label<'a>(&self, cell: &Cell, edge: CellDir, buf: &'a mut [u8]) -> Option<(&'a str, bool)> {
use std::io::Write;
let mut cur = std::io::Cursor::new(buf);
if cell.node_id == NodeId::Nop {
return None;
}
let out_idx =
match edge {
CellDir::TR => Some(cell.out1),
CellDir::BR => Some(cell.out2),
CellDir::B => Some(cell.out3),
_ => None,
};
let in_idx =
match edge {
CellDir::BL => Some(cell.in3),
CellDir::TL => Some(cell.in2),
CellDir::T => Some(cell.in1),
_ => None,
};
let info = self.info_for(&cell.node_id)?;
let mut is_connected_edge = false;
let edge_str =
if let Some(out_idx) = out_idx {
//d// println!(" CHECK ADJ EDGE {},{} @ {:?}", cell.x, cell.y, edge);
is_connected_edge =
self.adjacent_edge_has_input(
cell.x as usize, cell.y as usize, edge);
info.out_name(out_idx? as usize)
} else if let Some(in_idx) = in_idx {
info.in_name(in_idx? as usize)
} else {
None
};
let edge_str = edge_str?;
match write!(cur, "{}", edge_str) {
Ok(_) => {
let len = cur.position() as usize;
Some((
std::str::from_utf8(&(cur.into_inner())[0..len])
.unwrap(),
is_connected_edge))
},
Err(_) => None,
}
}
pub fn get_copy(&self, x: usize, y: usize) -> Option<Cell> {
if x >= self.w || y >= self.h {
return None;
}
let mut cell = self.matrix[x * self.h + y];
cell.x = x as u8;
cell.y = y as u8;
Some(cell)
}
pub fn get(&self, x: usize, y: usize) -> Option<&Cell> {
if x >= self.w || y >= self.h {
return None;
}
Some(&self.matrix[x * self.h + y])
}
pub fn param_input_is_used(&self, p: ParamId) -> bool {
self.assigned_inputs.contains(&p)
}
pub fn get_unused_instance_node_id(&self, id: NodeId) -> NodeId {
self.config.unused_instance_node_id(id)
}
fn create_intermediate_nodes(&mut self) {
// Scan through the matrix and check if (backend) nodes need to be created
// for new unknown nodes:
for x in 0..self.w {
for y in 0..self.h {
let cell = &mut self.matrix[x * self.h + y];
if cell.node_id == NodeId::Nop {
continue;
}
// - check if each NodeId has a corresponding entry in NodeConfigurator
// - if not, create a new one on the fly
if self.config.unique_index_for(&cell.node_id).is_none() {
// - check if the previous node exist, if not,
// create them on the fly now:
for inst in 0..cell.node_id.instance() {
let new_hole_filler_node_id =
cell.node_id.to_instance(inst);
if self.config
.unique_index_for(&new_hole_filler_node_id)
.is_none()
{
self.config.create_node(new_hole_filler_node_id)
.expect("NodeInfo existent in Matrix");
}
}
self.config.create_node(cell.node_id)
.expect("NodeInfo existent in Matrix");
}
}
}
}
fn update_graph_ordering_and_edges(&mut self) {
self.graph_ordering.clear();
self.edges.clear();
self.assigned_inputs.clear();
for x in 0..self.w {
for y in 0..self.h {
let cell = self.matrix[x * self.h + y];
if cell.node_id == NodeId::Nop {
continue;
}
self.graph_ordering.add_node(cell.node_id);
let in1_output = self.get_adjacent_output(x, y, CellDir::T);
let in2_output = self.get_adjacent_output(x, y, CellDir::TL);
let in3_output = self.get_adjacent_output(x, y, CellDir::BL);
match (cell.in1, in1_output) {
(Some(in1_idx), Some(in1_output)) => {
self.edges.push(Edge {
to: cell.node_id,
to_input: in1_idx,
from: in1_output.0,
from_out: in1_output.1,
});
self.graph_ordering.add_edge(
in1_output.0, cell.node_id);
},
_ => {},
}
match (cell.in2, in2_output) {
(Some(in2_idx), Some(in2_output)) => {
self.edges.push(Edge {
to: cell.node_id,
to_input: in2_idx,
from: in2_output.0,
from_out: in2_output.1,
});
self.graph_ordering.add_edge(
in2_output.0, cell.node_id);
},
_ => {},
}
match (cell.in3, in3_output) {
(Some(in3_idx), Some(in3_output)) => {
self.edges.push(Edge {
to: cell.node_id,
to_input: in3_idx,
from: in3_output.0,
from_out: in3_output.1,
});
self.graph_ordering.add_edge(
in3_output.0, cell.node_id);
},
_ => {},
}
}
}
for edge in self.edges.iter() {
if let Some(pid) = edge.to.param_by_idx(edge.to_input as usize) {
self.assigned_inputs.insert(pid);
}
}
}
/// Compiles a [NodeProg] from the data collected by the previous
/// call to [Matrix::update_graph_ordering_and_edges].
///
/// May return an error if the graph topology is invalid (cycles)
/// or something else happened.
fn build_prog(&mut self) -> Result<NodeProg, MatrixError> {
let mut ordered_nodes = vec![];
if !self.graph_ordering.calculate_order(&mut ordered_nodes) {
return Err(MatrixError::CycleDetected);
}
let mut prog = self.config.rebuild_node_ports();
for node_id in ordered_nodes.iter() {
self.config.add_prog_node(&mut prog, node_id);
}
for edge in self.edges.iter() {
self.config.set_prog_node_exec_connection(
&mut prog,
(edge.to, edge.to_input),
(edge.from, edge.from_out));
}
Ok(prog)
}
/// Checks the topology of the DSP graph represented by the
/// hexagonal matrix.
///
/// Use [Matrix::save_matrix] and [Matrix::restore_matrix]
/// for trying out changes before committing them to the
/// DSP thread using [Matrix::sync].
///
/// Note that there is a convenience function with [Matrix::change_matrix]
/// to make it easier to test and rollback changes if they are faulty.
///
///```
/// use hexodsp::*;
///
/// let (node_conf, mut node_exec) = new_node_engine();
/// let mut matrix = Matrix::new(node_conf, 3, 3);
///
/// matrix.save_matrix();
///
/// // ...
/// matrix.place(0, 1,
/// Cell::empty(NodeId::Sin(1))
/// .input(Some(0), None, None));
/// matrix.place(0, 0,
/// Cell::empty(NodeId::Sin(1))
/// .out(None, None, Some(0)));
/// // ...
///
/// let error =
/// if let Err(_) = matrix.check() {
/// matrix.restore_matrix();
/// true
/// } else {
/// matrix.sync().unwrap();
/// false
/// };
///
/// // In this examples case there is an error, as we created
/// // a cycle:
/// assert!(error);
///```
pub fn check(&mut self) -> Result<(), MatrixError> {
self.update_graph_ordering_and_edges();
let mut edge_map = std::collections::HashMap::new();
for edge in self.edges.iter() {
if let Some((out1_node_id, out1_idx)) = edge_map.get(&(edge.to, edge.to_input)) {
return Err(MatrixError::DuplicatedInput {
output1: (*out1_node_id, *out1_idx),
output2: (edge.from, edge.from_out),
});
} else {
edge_map.insert(
(edge.to, edge.to_input),
(edge.from, edge.from_out));
}
}
let mut ordered_nodes = vec![];
if !self.graph_ordering.calculate_order(&mut ordered_nodes) {
return Err(MatrixError::CycleDetected);
}
Ok(())
}
/// Synchronizes the matrix with the DSP thread.
/// Call this everytime you changed any of the matrix [Cell]s
/// eg. with [Matrix::place] and want to publish the
/// changes to the DSP thread.
///
/// This method might return an error, for instance if the
/// DSP graph topology contains cycles or has other errors.
///
/// You can check any changes and roll them back
/// using the method [Matrix::change_matrix].
pub fn sync(&mut self) -> Result<(), MatrixError> {
self.create_intermediate_nodes();
self.update_graph_ordering_and_edges();
let prog = self.build_prog()?;
self.config.upload_prog(prog, true); // true => copy_old_out
// Update the generation counter which is used
// by external data structures to sync their state with
// the Matrix.
self.gen_counter += 1;
// Refresh the input/outputs of the monitored cell,
// just in case something has changed with that monitored cell.
self.remonitor_cell();
Ok(())
}
/// Retrieves the output port feedback for a specific output
/// of the given [NodeId].
///
/// See also [NodeConfigurator::out_fb_for].
pub fn out_fb_for(&self, node_id: &NodeId, out: u8) -> Option<f32> {
self.config.out_fb_for(node_id, out)
}
/// Updates the output port feedback. Call this every UI frame
/// or whenever you want to get the most recent values from
/// [Matrix::out_fb_for].
///
/// See also [NodeConfigurator::update_output_feedback].
pub fn update_output_feedback(&mut self) {
self.config.update_output_feedback();
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn check_matrix_3_sine() {
use crate::nodes::new_node_engine;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
matrix.place(0, 0,
Cell::empty(NodeId::Sin(0))
.out(None, Some(0), None));
matrix.place(1, 0,
Cell::empty(NodeId::Sin(1))
.input(None, Some(0), None)
.out(None, None, Some(0)));
matrix.place(1, 1,
Cell::empty(NodeId::Sin(2))
.input(Some(0), None, None));
matrix.sync().unwrap();
node_exec.process_graph_updates();
let nodes = node_exec.get_nodes();
assert!(nodes[0].to_id(0) == NodeId::Sin(0));
assert!(nodes[1].to_id(1) == NodeId::Sin(1));
assert!(nodes[2].to_id(2) == NodeId::Sin(2));
let prog = node_exec.get_prog();
assert_eq!(prog.prog[0].to_string(), "Op(i=0 out=(0-1|1) in=(0-2|0) at=(0-0) mod=(0-0))");
assert_eq!(prog.prog[1].to_string(), "Op(i=1 out=(1-2|1) in=(2-4|1) at=(0-0) mod=(0-0) cpy=(o0 => i2))");
assert_eq!(prog.prog[2].to_string(), "Op(i=2 out=(2-3|0) in=(4-6|1) at=(0-0) mod=(0-0) cpy=(o1 => i4))");
}
#[test]
fn check_matrix_param_is_used() {
use crate::nodes::new_node_engine;
let (node_conf, _node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
matrix.place(0, 0,
Cell::empty(NodeId::Sin(0))
.out(None, Some(0), None));
matrix.place(1, 0,
Cell::empty(NodeId::Sin(1))
.input(None, Some(0), None)
.out(None, None, Some(0)));
matrix.place(1, 1,
Cell::empty(NodeId::Sin(2))
.input(Some(0), None, None));
matrix.sync().unwrap();
assert!(
matrix.param_input_is_used(
NodeId::Sin(1).inp_param("freq").unwrap()));
assert!(
!matrix.param_input_is_used(
NodeId::Sin(0).inp_param("freq").unwrap()));
matrix.place(1, 0, Cell::empty(NodeId::Nop));
matrix.sync().unwrap();
assert!(
!matrix.param_input_is_used(
NodeId::Sin(1).inp_param("freq").unwrap()));
assert!(
!matrix.param_input_is_used(
NodeId::Sin(2).inp_param("freq").unwrap()));
}
#[test]
fn check_matrix_filled() {
use crate::nodes::new_node_engine;
use crate::dsp::{NodeId, Node};
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 9, 9);
let mut i = 1;
for x in 0..9 {
for y in 0..9 {
matrix.place(x, y, Cell::empty(NodeId::Sin(i)));
i += 1;
}
}
matrix.sync().unwrap();
node_exec.process_graph_updates();
let nodes = node_exec.get_nodes();
let ex_nodes : Vec<&Node> =
nodes.iter().filter(|n| n.to_id(0) != NodeId::Nop).collect();
assert_eq!(ex_nodes.len(), 9 * 9 + 1);
}
#[test]
fn check_matrix_into_output() {
use crate::nodes::new_node_engine;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
matrix.place(0, 0,
Cell::empty(NodeId::Sin(0))
.out(None, Some(0), None));
matrix.place(1, 0,
Cell::empty(NodeId::Out(0))
.input(None, Some(0), None)
.out(None, None, Some(0)));
matrix.sync().unwrap();
node_exec.set_sample_rate(44100.0);
node_exec.process_graph_updates();
let nodes = node_exec.get_nodes();
assert!(nodes[0].to_id(0) == NodeId::Sin(0));
assert!(nodes[1].to_id(0) == NodeId::Out(0));
let prog = node_exec.get_prog();
assert_eq!(prog.prog.len(), 2);
assert_eq!(prog.prog[0].to_string(), "Op(i=0 out=(0-1|1) in=(0-2|0) at=(0-0) mod=(0-0))");
assert_eq!(prog.prog[1].to_string(), "Op(i=1 out=(1-1|0) in=(2-5|1) at=(0-1) mod=(0-0) cpy=(o0 => i2))");
}
#[test]
fn check_matrix_skip_instance() {
use crate::nodes::new_node_engine;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
matrix.place(0, 0,
Cell::empty(NodeId::Sin(2))
.out(None, Some(0), None));
matrix.place(1, 0,
Cell::empty(NodeId::Out(0))
.input(None, Some(0), None)
.out(None, None, Some(0)));
matrix.sync().unwrap();
node_exec.set_sample_rate(44100.0);
node_exec.process_graph_updates();
let nodes = node_exec.get_nodes();
assert!(nodes[0].to_id(0) == NodeId::Sin(0));
assert!(nodes[1].to_id(0) == NodeId::Sin(0));
assert!(nodes[2].to_id(0) == NodeId::Sin(0));
assert!(nodes[3].to_id(0) == NodeId::Out(0));
let prog = node_exec.get_prog();
assert_eq!(prog.prog.len(), 2);
assert_eq!(prog.prog[0].to_string(), "Op(i=2 out=(2-3|1) in=(4-6|0) at=(0-0) mod=(0-0))");
assert_eq!(prog.prog[1].to_string(), "Op(i=3 out=(3-3|0) in=(6-9|1) at=(0-1) mod=(0-0) cpy=(o2 => i6))");
}
#[test]
fn check_matrix_check_cycle() {
use crate::nodes::new_node_engine;
let (node_conf, _node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
matrix.save_matrix();
matrix.place(0, 1,
Cell::empty(NodeId::Sin(1))
.input(Some(0), None, None));
matrix.place(0, 0,
Cell::empty(NodeId::Sin(1))
.out(None, None, Some(0)));
let error =
if let Err(_) = matrix.check() {
matrix.restore_matrix();
true
} else {
matrix.sync().unwrap();
false
};
// In this examples case there is an error, as we created
// a cycle:
assert!(error);
}
#[test]
fn check_matrix_check_duplicate_input() {
use crate::nodes::new_node_engine;
let (node_conf, _node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 5, 5);
matrix.save_matrix();
matrix.place(0, 1,
Cell::empty(NodeId::Sin(0))
.input(Some(0), None, None));
matrix.place(0, 0,
Cell::empty(NodeId::Sin(1))
.out(None, None, Some(0)));
matrix.place(0, 3,
Cell::empty(NodeId::Sin(0))
.input(Some(0), None, None));
matrix.place(0, 2,
Cell::empty(NodeId::Sin(2))
.out(None, None, Some(0)));
assert_eq!(matrix.check(), Err(MatrixError::DuplicatedInput {
output1: (NodeId::Sin(1), 0),
output2: (NodeId::Sin(2), 0),
}));
}
#[test]
fn check_matrix_mod_amt_pre_sync() {
use crate::nodes::new_node_engine;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
matrix.place(0, 0,
Cell::empty(NodeId::Sin(0))
.out(None, Some(0), None));
matrix.place(1, 0,
Cell::empty(NodeId::Sin(1))
.input(None, Some(0), None)
.out(None, None, Some(0)));
matrix.place(0, 1,
Cell::empty(NodeId::Sin(3))
.input(None, None, None)
.out(None, Some(0), None));
matrix.place(1, 1,
Cell::empty(NodeId::Sin(2))
.input(Some(0), Some(1), None));
matrix.set_param_modamt(
NodeId::Sin(1).param_by_idx(0).unwrap(),
Some(0.5)).unwrap();
matrix.set_param_modamt(
NodeId::Sin(1).param_by_idx(1).unwrap(),
Some(0.33)).unwrap();
matrix.set_param_modamt(
NodeId::Sin(0).param_by_idx(0).unwrap(),
Some(0.25)).unwrap();
matrix.set_param_modamt(
NodeId::Sin(2).param_by_idx(0).unwrap(),
Some(0.75)).unwrap();
matrix.set_param_modamt(
NodeId::Sin(2).param_by_idx(1).unwrap(),
Some(-0.75)).unwrap();
matrix.sync().unwrap();
node_exec.process_graph_updates();
let prog = node_exec.get_prog();
assert_eq!(prog.prog[0].to_string(), "Op(i=0 out=(0-1|1) in=(0-2|0) at=(0-0) mod=(0-1))");
assert_eq!(prog.prog[1].to_string(), "Op(i=3 out=(3-4|1) in=(6-8|0) at=(0-0) mod=(5-5))");
assert_eq!(prog.prog[2].to_string(), "Op(i=1 out=(1-2|1) in=(2-4|1) at=(0-0) mod=(1-3) cpy=(o0 => i2) mod=1)");
assert_eq!(prog.prog[3].to_string(), "Op(i=2 out=(2-3|0) in=(4-6|3) at=(0-0) mod=(3-5) cpy=(o1 => i4) cpy=(o3 => i5) mod=3 mod=4)");
}
#[test]
fn check_matrix_mod_amt_post_sync() {
use crate::nodes::new_node_engine;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
matrix.place(0, 0,
Cell::empty(NodeId::Sin(0))
.out(None, Some(0), None));
matrix.place(1, 0,
Cell::empty(NodeId::Sin(1))
.input(None, Some(0), None)
.out(None, None, Some(0)));
matrix.place(1, 1,
Cell::empty(NodeId::Sin(2))
.input(Some(0), None, None));
matrix.sync().unwrap();
matrix.set_param_modamt(
NodeId::Sin(1).param_by_idx(0).unwrap(),
Some(0.5)).unwrap();
matrix.set_param_modamt(
NodeId::Sin(1).param_by_idx(1).unwrap(),
Some(0.33)).unwrap();
matrix.set_param_modamt(
NodeId::Sin(0).param_by_idx(0).unwrap(),
Some(0.25)).unwrap();
node_exec.process_graph_updates();
let prog = node_exec.get_prog();
assert_eq!(prog.prog[0].to_string(), "Op(i=0 out=(0-1|1) in=(0-2|0) at=(0-0) mod=(0-1))");
assert_eq!(prog.prog[1].to_string(), "Op(i=1 out=(1-2|1) in=(2-4|1) at=(0-0) mod=(1-3) cpy=(o0 => i2) mod=1)");
assert_eq!(prog.prog[2].to_string(), "Op(i=2 out=(2-3|0) in=(4-6|1) at=(0-0) mod=(3-3) cpy=(o1 => i4))");
}
}