HexoDSP/tests/node_sfilter.rs
2021-08-04 03:58:43 +02:00

1360 lines
54 KiB
Rust

// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of HexoDSP. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
mod common;
use common::*;
fn setup_sfilter_matrix() -> (Matrix, NodeExecutor) {
let (node_conf, node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let noise = NodeId::Noise(0);
let sf = NodeId::SFilter(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(noise)
.out(None, None, noise.out("sig")));
matrix.place(0, 1, Cell::empty(sf)
.input(sf.inp("inp"), None, None)
.out(None, None, sf.out("sig")));
matrix.place(0, 2, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.place(1, 1, Cell::empty(noise)
.out(None, None, noise.out("sig")));
matrix.place(1, 2, Cell::empty(out)
.input(out.inp("ch2"), None, None));
pset_n(&mut matrix, noise, "atv", 1.0);
matrix.sync().unwrap();
(matrix, node_exec)
}
fn fft_with_freq_res_type(
matrix: &mut Matrix,
node_exec: &mut NodeExecutor,
ftype: i64, freq: f32, res: f32) -> Vec<(u16, u32)>
{
let sf = NodeId::SFilter(0);
pset_d(matrix, sf, "freq", freq);
pset_d_wait(matrix, node_exec, sf, "res", res);
pset_s(matrix, sf, "ftype", ftype);
run_and_get_fft4096(node_exec, 0, 1000.0)
}
#[test]
fn check_node_sfilter_lowpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Low Pass @ 1000Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 0, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000,
], &fft[..]), vec![
(0, 16), (100, 24), (250, 16), (500, 12), (750, 12), (1000, 12),
(1500, 8), (2000, 4), (3000, 4), (4000, 0), (8000, 0), (12000, 0),
]);
// let v = run_and_get_fft4096_2(&mut node_exec, 1);
// assert_eq!(
// avg_fft_freqs(4.0, &[
// 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000,
// ], &v[..]), vec![
// (0, 16), (100, 24), (250, 16), (500, 12), (750, 12), (1000, 12),
// (1500, 8), (2000, 4), (3000, 4), (4000, 0), (8000, 0), (12000, 0),
// ]);
// assert!(false);
// Low Pass @ 4000Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 0, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000,
], &fft[..]), vec![
(0, 16), (100, 20), (250, 16), (500, 12), (750, 20), (1000, 16),
(1500, 16), (2000, 16), (3000, 12), (4000, 8), (8000, 4), (12000, 4),
]);
// Low Pass @ 22050Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 0, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16),
]);
// Low Pass @ 0Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 0, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
]);
}
#[test]
fn check_node_sfilter_lowpass_tpt() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Low Pass TPT @ 1000Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 1, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000,
], &fft[..]), vec![
(0, 16), (100, 24), (250, 16), (500, 12), (750, 12), (1000, 12),
(1500, 8), (2000, 4), (3000, 4), (4000, 0), (8000, 0), (12000, 0),
]);
// Low Pass TPT @ 4000Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 1, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 8000, 12000, 16000,
], &fft[..]), vec![
(0, 16), (100, 20), (250, 16), (500, 12), (750, 20), (1000, 16),
(1500, 16), (2000, 16), (3000, 12), (4000, 8), (8000, 4), (12000, 0),
]);
// Low Pass TPT @ 22050Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 1, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16),
]);
// Low Pass TPT @ 0Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 1, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
]);
}
#[test]
fn check_node_sfilter_highpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// High Pass @ 1000Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 2, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 250, 500, 750, 1000, 1500, 2000, 3000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 4), (250, 4), (500, 8), (750, 8), (1000, 16),
(1500, 16), (2000, 16), (3000, 16), (8000, 16),
]);
// High Pass @ 4000Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 2, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 250, 500, 750, 1000, 1500, 2000, 3000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (250, 0), (500, 0), (750, 4), (1000, 4),
(1500, 4), (2000, 8), (3000, 12), (8000, 16),
]);
// High Pass @ 22050Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 2, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (100, 0), (1000, 0), (4000, 8), (12000, 16),
]);
// High Pass @ 0Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 2, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 24), (100, 16), (1000, 16), (4000, 16), (12000, 16),
]);
}
#[test]
fn check_node_sfilter_highpass_tpt() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// High Pass TPT @ 1000Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 3, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 250, 500, 750, 1000, 1500, 2000, 3000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (250, 4), (500, 8), (750, 8), (1000, 16),
(1500, 16), (2000, 16), (3000, 16), (8000, 16),
]);
// High Pass TPT @ 4000Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 3, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 250, 500, 750, 1000, 1500, 2000, 3000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (250, 0), (500, 0), (750, 4), (1000, 4),
(1500, 4), (2000, 8), (3000, 12), (8000, 16),
]);
// High Pass TPT @ 22050Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 3, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
]);
// High Pass TPT @ 0Hz
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 3, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 24), (100, 16), (1000, 16), (4000, 16), (12000, 16),
]);
}
#[test]
fn check_node_sfilter_halsvf_lowpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Low Pass Hal Chamberlin SVF @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 20), (500, 20), (700, 50), (900, 240), (1000, 60),
(1500, 10), (2000, 0), (3000, 0), (4000, 0)
]);
// Low Pass Hal Chamberlin SVF @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 20), (500, 20), (700, 30), (900, 40), (1000, 20),
(1500, 0), (2000, 0), (3000, 0), (4000, 0)
]);
// Low Pass Hal Chamberlin SVF @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 20), (700, 20), (900, 10), (1000, 10),
(1500, 0), (2000, 0), (3000, 0), (4000, 0)
]);
// Low Pass Hal Chamberlin SVF @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 24), (100, 16), (500, 20), (1000, 20), (2000, 40), (3500, 340),
(4000, 180), (5000, 20), (6000, 8), (8000, 0)
]);
// Low Pass Hal Chamberlin SVF @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 12), (500, 16), (1000, 16), (2000, 20), (3500, 20),
(4000, 16), (5000, 8), (6000, 4), (8000, 0)
]);
// Low Pass Hal Chamberlin SVF @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![
(0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 24), (20000, 16)
]);
// Low Pass Hal Chamberlin SVF @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]), vec![
(0, 8), (100, 16), (1000, 16), (4000, 24), (12000, 160),
(16000, 176), (20000, 24)
]);
// Low Pass Hal Chamberlin SVF @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 12), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
]);
// Low Pass Hal Chamberlin SVF @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 4, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[1, 5, 10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 56), (1, 0), (5, 0), (10, 0), (100, 0), (1000, 0),
(4000, 0), (12000, 0),
]);
}
#[test]
fn check_node_sfilter_halsvf_highpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// High Pass Hal Chamberlin SVF @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 0), (700, 30), (900, 220), (1000, 80),
(1500, 30), (2000, 20), (3000, 20), (4000, 10)
]);
// High Pass Hal Chamberlin SVF @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 0), (700, 20), (900, 30), (1000, 30),
(1500, 20), (2000, 20), (3000, 20), (4000, 20)
]);
// High Pass Hal Chamberlin SVF @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 0), (700, 10), (900, 10), (1000, 20), (1500, 20),
(2000, 20), (3000, 20), (4000, 10)
]);
// High Pass Hal Chamberlin SVF @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 20),
(3500, 320), (4000, 200), (5000, 40), (6000, 28), (8000, 20)
]);
// High Pass Hal Chamberlin SVF @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 8),
(3500, 12), (4000, 16), (5000, 16), (6000, 20), (8000, 20)
]);
// High Pass Hal Chamberlin SVF @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 8), (4000, 24),
(12000, 32), (16000, 40), (20000, 40)
]);
// High Pass Hal Chamberlin SVF @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 8), (12000, 144),
(16000, 192), (20000, 48)
]);
// High Pass Hal Chamberlin SVF @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 52), (10, 12), (100, 20), (1000, 16), (4000, 16), (12000, 16)
]);
// High Pass Hal Chamberlin SVF @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 5, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 112), (10, 36), (100, 16), (1000, 20), (4000, 16), (12000, 20)
]);
}
#[test]
fn check_node_sfilter_halsvf_bandpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Band Pass Hal Chamberlin SVF @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (250, 0), (500, 10), (700, 40), (900, 230),
(1000, 70), (1500, 20), (2000, 0), (3000, 0), (4000, 0)
]);
// Band Pass Hal Chamberlin SVF @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (250, 0), (500, 10), (700, 30), (900, 30),
(1000, 30), (1500, 10), (2000, 0), (3000, 0), (4000, 0)
]);
// Band Pass Hal Chamberlin SVF @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (250, 0), (500, 10), (700, 10), (900, 10),
(1000, 10), (1500, 10), (2000, 0), (3000, 0), (4000, 0)
]);
// Band Pass Hal Chamberlin SVF @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 20),
(3500, 330), (4000, 190), (5000, 30), (6000, 10), (8000, 0)
]);
// Band Pass Hal Chamberlin SVF @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 10), (3500, 20),
(4000, 10), (5000, 10), (6000, 10), (8000, 10)
]);
// Band Pass Hal Chamberlin SVF @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0),
(12000, 0), (16000, 0), (20000, 0)
]);
// Band Pass Hal Chamberlin SVF @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 8), (12000, 136),
(16000, 200), (20000, 48)
]);
// Band Pass Hal Chamberlin SVF @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 48), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
// Band Pass Hal Chamberlin SVF @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 6, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 4), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
}
#[test]
fn check_node_sfilter_halsvf_notch() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Notch Hal Chamberlin SVF @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 10), (700, 10), (850, 10), (900, 20), (950, 10),
(1000, 10), (1100, 20), (1200, 20), (1400, 20), (2000, 10),
(3000, 10), (4000, 10)
]);
// Notch Hal Chamberlin SVF @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 10), (700, 10), (850, 10), (900, 0), (950, 0),
(1000, 0), (1100, 0), (1200, 10), (1400, 10), (2000, 10),
(3000, 10), (4000, 10)
]);
// Notch Hal Chamberlin SVF @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 10), (700, 0), (850, 0), (900, 0), (950, 0),
(1000, 0), (1100, 0), (1200, 0), (1400, 10), (2000, 10),
(3000, 10), (4000, 10)
]);
// Notch Hal Chamberlin SVF @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 4500, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 10), (500, 10), (1000, 10), (2000, 10), (3500, 10),
(4000, 20), (4500, 10), (5000, 10), (6000, 20), (8000, 10)
]);
// Notch Hal Chamberlin SVF @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 10), (500, 10), (1000, 10), (2000, 10), (3500, 0),
(4000, 0), (5000, 0), (6000, 10), (8000, 10)
]);
// Notch Hal Chamberlin SVF @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 16), (20000, 16)
]);
// Notch Hal Chamberlin SVF @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 8), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 16), (20000, 16)
]);
// Notch Hal Chamberlin SVF @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 68), (10, 12), (100, 20), (1000, 16), (4000, 16), (12000, 16)
]);
// Notch Hal Chamberlin SVF @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 7, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 20), (10, 32), (100, 16), (1000, 20), (4000, 16), (12000, 20)
]);
}
#[test]
fn check_node_sfilter_simpersvf_lowpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Low Pass Simper SVF @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 20), (500, 20), (700, 50), (900, 240), (1000, 60),
(1500, 10), (2000, 0), (3000, 0), (4000, 0)
]);
// Low Pass Simper SVF @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 10), (700, 20), (900, 20), (1000, 10),
(1500, 0), (2000, 0), (3000, 0), (4000, 0)
]);
// Low Pass Simper SVF @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 10), (700, 10), (900, 0), (1000, 0),
(1500, 0), (2000, 0), (3000, 0), (4000, 0)
]);
// Low Pass Simper SVF @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 24), (100, 16), (500, 20), (1000, 20), (2000, 36), (3500, 332),
(4000, 164), (5000, 20), (6000, 8), (8000, 0)
]);
// Low Pass Simper SVF @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 12), (500, 16), (1000, 16), (2000, 12), (3500, 8),
(4000, 8), (5000, 4), (6000, 4), (8000, 0)
]);
// Low Pass Simper SVF @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050, 22051], &fft[..]), vec![
(0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 16), (20000, 16), (22050, 0)
]);
// Low Pass Simper SVF @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050, 22051], &fft[..]), vec![
(0, 8), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 16), (20000, 16), (22050, 0)
]);
// Low Pass Simper SVF @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050, 22051], &fft[..]), vec![
(0, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
(22050, 0)
]);
// Low Pass Simper SVF @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 8, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[1, 5, 10, 100, 1000, 4000, 12000, 22050, 22051], &fft[..]), vec![
(0, 68), (1, 0), (5, 0), (10, 4), (100, 0), (1000, 0),
(4000, 0), (12000, 0), (22050, 0)
]);
}
#[test]
fn check_node_sfilter_simpersvf_highpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// High Pass Simper SVF @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 0), (700, 30), (900, 220), (1000, 80),
(1500, 30), (2000, 20), (3000, 20), (4000, 10)
]);
// High Pass Simper SVF @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 0), (700, 10), (900, 10), (1000, 20),
(1500, 20), (2000, 20), (3000, 10), (4000, 10)
]);
// High Pass Simper SVF @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 0), (700, 0), (900, 0), (1000, 10), (1500, 10),
(2000, 10), (3000, 10), (4000, 10)
]);
// High Pass Simper SVF @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 20),
(3500, 312), (4000, 184), (5000, 40), (6000, 28), (8000, 20)
]);
// High Pass Simper SVF @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 4),
(3500, 8), (4000, 8), (5000, 8), (6000, 12), (8000, 16)
]);
// High Pass Simper SVF @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0),
(12000, 0), (16000, 0), (20000, 0)
]);
// High Pass Simper SVF @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
(16000, 0), (20000, 0)
]);
// High Pass Simper SVF @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 32), (10, 12), (100, 20), (1000, 16), (4000, 16), (12000, 16)
]);
// High Pass Simper SVF @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 9, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 92), (10, 36), (100, 16), (1000, 20), (4000, 16), (12000, 20)
]);
}
#[test]
fn check_node_sfilter_simpersvf_bandpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Band Pass Simper SVF @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 10, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (250, 0), (500, 10), (700, 40), (900, 230),
(1000, 70), (1500, 10), (2000, 0), (3000, 0), (4000, 0)
]);
// Band Pass Simper SVF @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 10, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (250, 0), (500, 10), (700, 10), (900, 10),
(1000, 10), (1500, 10), (2000, 0), (3000, 0), (4000, 0)
]);
// Band Pass Simper SVF @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 10, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (250, 0), (500, 8), (700, 8), (900, 8),
(1000, 8), (1500, 4), (2000, 4), (3000, 4), (4000, 0)
]);
// Band Pass Simper SVF @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 10, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 20),
(3500, 320), (4000, 170), (5000, 20), (6000, 10), (8000, 0)
]);
// Band Pass Simper SVF @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 10, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 0), (3500, 10),
(4000, 0), (5000, 0), (6000, 0), (8000, 0)
]);
// Band Pass Simper SVF @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 10, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0),
(12000, 0), (16000, 0), (20000, 0)
]);
// Band Pass Simper SVF @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 10, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
(16000, 0), (20000, 0)
]);
// Band Pass Simper SVF @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 10, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 4), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
// Band Pass Simper SVF @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 10, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 12), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
}
#[test]
fn check_node_sfilter_simpersvf_notch() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Notch Simper SVF @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 11, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 10), (700, 10), (850, 10), (900, 20), (950, 10),
(1000, 10), (1100, 20), (1200, 20), (1400, 20), (2000, 10),
(3000, 10), (4000, 10)
]);
// Notch Simper SVF @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 11, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 10), (700, 0), (850, 0), (900, 0), (950, 0),
(1000, 0), (1100, 0), (1200, 0), (1400, 10), (2000, 10),
(3000, 10), (4000, 10)
]);
// Notch Simper SVF @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 11, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 0), (700, 0), (850, 0), (900, 0), (950, 0),
(1000, 0), (1100, 0), (1200, 0), (1400, 0), (2000, 10),
(3000, 10), (4000, 10)
]);
// Notch Simper SVF @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 11, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 4500, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 10), (500, 10), (1000, 10), (2000, 10), (3500, 10),
(4000, 20), (4500, 10), (5000, 10), (6000, 20), (8000, 10)
]);
// Notch Simper SVF @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 11, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 10), (500, 10), (1000, 10), (2000, 0), (3500, 0),
(4000, 0), (5000, 0), (6000, 10), (8000, 10)
]);
// Notch Simper SVF @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 11, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 16), (20000, 16)
]);
// Notch Simper SVF @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 11, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 8), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 16), (20000, 16)
]);
// Notch Simper SVF @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 11, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 32), (10, 12), (100, 20), (1000, 16), (4000, 16), (12000, 16)
]);
// Notch Simper SVF @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 11, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 20), (10, 32), (100, 16), (1000, 20), (4000, 16), (12000, 20)
]);
}
#[test]
fn check_node_sfilter_simpersvf_peak() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Peak Simper SVF @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 12, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 20), (500, 30), (700, 70), (850, 120), (900, 340), (950, 620),
(1000, 320), (1100, 170), (1200, 80), (1400, 40), (2000, 20),
(3000, 20), (4000, 10)
]);
// Peak Simper SVF @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 12, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 20), (500, 20), (700, 30), (850, 40), (900, 30), (950, 40),
(1000, 40), (1100, 40), (1200, 20), (1400, 20), (2000, 20),
(3000, 20), (4000, 20)
]);
// Peak Simper SVF @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 12, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 10), (700, 10), (850, 10), (900, 10), (950, 10),
(1000, 20), (1100, 10), (1200, 10), (1400, 10), (2000, 10),
(3000, 20), (4000, 10)
]);
// Peak Simper SVF @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 12, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 4500, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 10), (500, 20), (1000, 20), (2000, 50),
(3500, 640), (4000, 630), (4500, 80), (5000, 60),
(6000, 30), (8000, 20)
]);
// Peak Simper SVF @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 12, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 10), (500, 10), (1000, 10), (2000, 10), (3500, 20),
(4000, 20), (5000, 10), (6000, 10), (8000, 20)
]);
// Peak Simper SVF @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 12, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 16), (20000, 16)
]);
// Peak Simper SVF @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 12, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 8), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 16), (20000, 24)
]);
// Peak Simper SVF @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 12, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 28), (10, 12), (100, 20), (1000, 16), (4000, 16), (12000, 16)
]);
// Peak Simper SVF @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 12, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 164), (10, 40), (100, 16), (1000, 20), (4000, 16), (12000, 20)
]);
}
#[test]
fn check_node_sfilter_moog_lowpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Low Pass Stilson/Moog @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 13, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 200, 400, 500, 700, 900, 1000, 1100, 1200,
1500, 2000, 3000, 4000, 6000, 12000
], &fft[..]), vec![
(0, 0), (100, 4), (200, 4), (400, 0), (500, 4), (700, 4),
(900, 12), (1000, 36), (1100, 80), (1200, 8),
(1500, 0), (2000, 0), (3000, 0), (4000, 0), (6000, 0)
]);
// Low Pass Stilson/Moog @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 13, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 200, 400, 500, 700, 900, 1000, 1100, 1200,
1500, 2000, 3000, 4000, 6000, 12000
], &fft[..]), vec![
(0, 4), (100, 4), (200, 4), (400, 4), (500, 8),
(700, 12), (900, 16), (1000, 12), (1100, 8), (1200, 4),
(1500, 0), (2000, 0), (3000, 0), (4000, 0), (6000, 0)
]);
// Low Pass Stilson/Moog @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 13, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 200, 400, 500, 700, 900, 1000, 1100, 1200,
1500, 2000, 3000, 4000, 6000, 12000
], &fft[..]), vec![
(0, 16), (100, 16), (200, 16), (400, 4), (500, 12), (700, 8),
(900, 4), (1000, 4), (1100, 0), (1200, 0), (1500, 0), (2000, 0),
(3000, 0), (4000, 0), (6000, 0)
]);
// Low Pass Stilson/Moog @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 13, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 4), (100, 4), (500, 4), (1000, 4), (2000, 4),
(3500, 20), (4000, 52), (5000, 4), (6000, 0), (8000, 0)
]);
// Low Pass Stilson/Moog @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 13, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 12), (500, 16), (1000, 16), (2000, 12), (3500, 8),
(4000, 4), (5000, 4), (6000, 0), (8000, 0)
]);
// Low Pass Stilson/Moog @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 13, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050, 22051], &fft[..]), vec![
(0, 16), (100, 16), (1000, 16), (4000, 16), (12000, 16),
(16000, 16), (20000, 8), (22050, 0)
]);
// Low Pass Stilson/Moog @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 13, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050, 22051], &fft[..]), vec![
(0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
(16000, 0), (20000, 0), (22050, 0)
]);
// Low Pass Stilson/Moog @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 13, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050, 22051], &fft[..]), vec![
(0, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
(22050, 0)
]);
// Low Pass Stilson/Moog @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 13, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[1, 5, 10, 100, 1000, 4000, 12000, 22050, 22051], &fft[..]), vec![
(0, 0), (1, 0), (5, 0), (10, 0), (100, 0), (1000, 0),
(4000, 0), (12000, 0), (22050, 0)
]);
}
#[test]
fn check_node_sfilter_moog_highpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// High Pass Stilson/Moog @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 14, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 10), (700, 20), (900, 40), (1000, 140),
(1500, 30), (2000, 10), (3000, 10), (4000, 10)
]);
// High Pass Stilson/Moog @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 14, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 10), (700, 40), (900, 50), (1000, 40),
(1500, 20), (2000, 20), (3000, 10), (4000, 10)
]);
// High Pass Stilson/Moog @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 14, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 20), (700, 20), (900, 20), (1000, 20),
(1500, 20), (2000, 10), (3000, 20), (4000, 10)
]);
// High Pass Stilson/Moog @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 14, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 4), (2000, 16),
(3500, 68), (4000, 200), (5000, 36), (6000, 24), (8000, 16)
]);
// High Pass Stilson/Moog @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 14, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 8), (1000, 16), (2000, 24), (3500, 28),
(4000, 24), (5000, 20), (6000, 20), (8000, 20)
]);
// High Pass Stilson/Moog @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 14, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0),
(12000, 0), (16000, 0), (20000, 8)
]);
// High Pass Stilson/Moog @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 14, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
(16000, 0), (20000, 0)
]);
// High Pass Stilson/Moog @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 14, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
// High Pass Stilson/Moog @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 14, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
}
#[test]
fn check_node_sfilter_moog_bandpass() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Band Pass Stilson/Moog @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 15, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (250, 0), (500, 0), (700, 10), (900, 30),
(1000, 80), (1500, 10), (2000, 0), (3000, 0), (4000, 0)
]);
// Band Pass Stilson/Moog @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 15, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (250, 0), (500, 10), (700, 30), (900, 30), (1000, 20),
(1500, 0), (2000, 0), (3000, 0), (4000, 0)
]);
// Band Pass Stilson/Moog @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 15, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[
250, 500, 700, 900, 1000, 1500, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 4), (250, 8), (500, 16), (700, 16), (900, 12), (1000, 12),
(1500, 4), (2000, 4), (3000, 0), (4000, 0)
]);
// Band Pass Stilson/Moog @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 15, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 10),
(3500, 50), (4000, 130), (5000, 20), (6000, 10), (8000, 0)
]);
// Band Pass Stilson/Moog @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 15, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 10), (2000, 10), (3500, 10),
(4000, 10), (5000, 10), (6000, 10), (8000, 0)
]);
// Band Pass Stilson/Moog @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 15, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0),
(12000, 0), (16000, 8), (20000, 32)
]);
// Band Pass Stilson/Moog @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 15, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
(16000, 0), (20000, 0)
]);
// Band Pass Stilson/Moog @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 15, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
// Band Pass Stilson/Moog @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 15, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
}
#[test]
fn check_node_sfilter_moog_notch() {
let (mut matrix, mut node_exec) = setup_sfilter_matrix();
// Notch Stilson/Moog @ 1000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 16, 1000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 0), (700, 10), (850, 20), (900, 40), (950, 30),
(1000, 150), (1100, 370), (1200, 80), (1400, 40), (2000, 20),
(3000, 10), (4000, 10)
]);
// Notch Stilson/Moog @ 1000Hz RES=0.5
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 16, 1000.0, 0.5);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 0), (500, 0), (700, 10), (850, 30), (900, 30), (950, 50),
(1000, 50), (1100, 50), (1200, 30), (1400, 30), (2000, 20),
(3000, 20), (4000, 10)
]);
// Notch Stilson/Moog @ 1000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 16, 1000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
500, 700, 850, 900, 950, 1000, 1100, 1200, 1400, 2000, 3000, 4000, 12000
], &fft[..]), vec![
(0, 10), (500, 0), (700, 10), (850, 10), (900, 10), (950, 10),
(1000, 20), (1100, 10), (1200, 20), (1400, 20), (2000, 20),
(3000, 20), (4000, 10)
]);
// Notch Stilson/Moog @ 4000Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 16, 4000.0, 1.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 4500, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 0), (100, 0), (500, 0), (1000, 0), (2000, 10), (3500, 50),
(4000, 260), (4500, 60), (5000, 40), (6000, 20), (8000, 20)
]);
// Notch Stilson/Moog @ 4000Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 16, 4000.0, 0.0);
assert_eq!(
avg_fft_freqs(10.0, &[
100, 500, 1000, 2000, 3500, 4000, 5000, 6000, 8000, 12000
], &fft[..]), vec![
(0, 20), (100, 10), (500, 10), (1000, 0), (2000, 0), (3500, 10),
(4000, 20), (5000, 20), (6000, 20), (8000, 20)
]);
// Notch Stilson/Moog @ 22050Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 16, 22050.0, 0.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 8), (100, 8), (1000, 16), (4000, 16), (12000, 8),
(16000, 16), (20000, 16)
]);
// Notch Stilson/Moog @ 22050Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 16, 22050.0, 1.0);
assert_eq!(
avg_fft_freqs(8.0, &[100, 1000, 4000, 12000, 16000, 20000, 22050], &fft[..]),
vec![
(0, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0),
(16000, 0), (20000, 0)
]);
// Notch Stilson/Moog @ 0Hz RES=0.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 16, 0.0, 0.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
// Notch Stilson/Moog @ 0Hz RES=1.0
let fft = fft_with_freq_res_type(&mut matrix, &mut node_exec, 16, 0.0, 1.0);
assert_eq!(
avg_fft_freqs(4.0, &[10, 100, 1000, 4000, 12000, 22050], &fft[..]), vec![
(0, 0), (10, 0), (100, 0), (1000, 0), (4000, 0), (12000, 0)
]);
}