2239 lines
62 KiB
Rust
2239 lines
62 KiB
Rust
// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
|
|
// This file is a part of HexoDSP. Released under GPL-3.0-or-later.
|
|
// See README.md and COPYING for details.
|
|
|
|
use std::cell::RefCell;
|
|
use num_traits::{Float, FloatConst, cast::FromPrimitive, cast::ToPrimitive};
|
|
|
|
macro_rules! trait_alias {
|
|
($name:ident = $base1:ident + $($base2:ident +)+) => {
|
|
pub trait $name: $base1 $(+ $base2)+ { }
|
|
impl<T: $base1 $(+ $base2)+> $name for T { }
|
|
};
|
|
}
|
|
|
|
trait_alias!(Flt = Float + FloatConst + ToPrimitive + FromPrimitive +);
|
|
|
|
/// Logarithmic table size of the table in [fast_cos] / [fast_sin].
|
|
static FAST_COS_TAB_LOG2_SIZE : usize = 9;
|
|
/// Table size of the table in [fast_cos] / [fast_sin].
|
|
static FAST_COS_TAB_SIZE : usize = 1 << FAST_COS_TAB_LOG2_SIZE; // =512
|
|
/// The wave table of [fast_cos] / [fast_sin].
|
|
static mut FAST_COS_TAB : [f32; 513] = [0.0; 513];
|
|
|
|
/// Initializes the cosine wave table for [fast_cos] and [fast_sin].
|
|
pub fn init_cos_tab() {
|
|
for i in 0..(FAST_COS_TAB_SIZE+1) {
|
|
let phase : f32 =
|
|
(i as f32)
|
|
* ((std::f32::consts::TAU)
|
|
/ (FAST_COS_TAB_SIZE as f32));
|
|
unsafe {
|
|
// XXX: note: mutable statics can be mutated by multiple
|
|
// threads: aliasing violations or data races
|
|
// will cause undefined behavior
|
|
FAST_COS_TAB[i] = phase.cos();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Internal phase increment/scaling for [fast_cos].
|
|
const PHASE_SCALE : f32 = 1.0_f32 / (std::f32::consts::TAU);
|
|
|
|
/// A faster implementation of cosine. It's not that much faster than
|
|
/// Rust's built in cosine function. But YMMV.
|
|
///
|
|
/// Don't forget to call [init_cos_tab] before using this!
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
/// init_cos_tab(); // Once on process initialization.
|
|
///
|
|
/// // ...
|
|
/// assert!((fast_cos(std::f32::consts::PI) - -1.0).abs() < 0.001);
|
|
///```
|
|
pub fn fast_cos(mut x: f32) -> f32 {
|
|
x = x.abs(); // cosine is symmetrical around 0, let's get rid of negative values
|
|
|
|
// normalize range from 0..2PI to 1..2
|
|
let phase = x * PHASE_SCALE;
|
|
|
|
let index = FAST_COS_TAB_SIZE as f32 * phase;
|
|
|
|
let fract = index.fract();
|
|
let index = index.floor() as usize;
|
|
|
|
unsafe {
|
|
// XXX: note: mutable statics can be mutated by multiple
|
|
// threads: aliasing violations or data races
|
|
// will cause undefined behavior
|
|
let left = FAST_COS_TAB[index as usize];
|
|
let right = FAST_COS_TAB[index as usize + 1];
|
|
|
|
return left + (right - left) * fract;
|
|
}
|
|
}
|
|
|
|
/// A faster implementation of sine. It's not that much faster than
|
|
/// Rust's built in sine function. But YMMV.
|
|
///
|
|
/// Don't forget to call [init_cos_tab] before using this!
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
/// init_cos_tab(); // Once on process initialization.
|
|
///
|
|
/// // ...
|
|
/// assert!((fast_sin(0.5 * std::f32::consts::PI) - 1.0).abs() < 0.001);
|
|
///```
|
|
pub fn fast_sin(x: f32) -> f32 {
|
|
fast_cos(x - (std::f32::consts::PI / 2.0))
|
|
}
|
|
|
|
/// A wavetable filled entirely with white noise.
|
|
/// Don't forget to call [init_white_noise_tab] before using it.
|
|
static mut WHITE_NOISE_TAB: [f64; 1024] = [0.0; 1024];
|
|
|
|
#[allow(rustdoc::private_intra_doc_links)]
|
|
/// Initializes [WHITE_NOISE_TAB].
|
|
pub fn init_white_noise_tab() {
|
|
let mut rng = RandGen::new();
|
|
unsafe {
|
|
for i in 0..WHITE_NOISE_TAB.len() {
|
|
WHITE_NOISE_TAB[i as usize] = rng.next_open01();
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
|
/// Random number generator based on xoroshiro128.
|
|
/// Requires two internal state variables. You may prefer [SplitMix64] or [Rng].
|
|
pub struct RandGen {
|
|
r: [u64; 2],
|
|
}
|
|
|
|
// Taken from xoroshiro128 crate under MIT License
|
|
// Implemented by Matthew Scharley (Copyright 2016)
|
|
// https://github.com/mscharley/rust-xoroshiro128
|
|
/// Given the mutable `state` generates the next pseudo random number.
|
|
pub fn next_xoroshiro128(state: &mut [u64; 2]) -> u64 {
|
|
let s0: u64 = state[0];
|
|
let mut s1: u64 = state[1];
|
|
let result: u64 = s0.wrapping_add(s1);
|
|
|
|
s1 ^= s0;
|
|
state[0] = s0.rotate_left(55) ^ s1 ^ (s1 << 14); // a, b
|
|
state[1] = s1.rotate_left(36); // c
|
|
|
|
result
|
|
}
|
|
|
|
// Taken from rand::distributions
|
|
// Licensed under the Apache License, Version 2.0
|
|
// Copyright 2018 Developers of the Rand project.
|
|
/// Maps any `u64` to a `f64` in the open interval `[0.0, 1.0)`.
|
|
pub fn u64_to_open01(u: u64) -> f64 {
|
|
use core::f64::EPSILON;
|
|
let float_size = std::mem::size_of::<f64>() as u32 * 8;
|
|
let fraction = u >> (float_size - 52);
|
|
let exponent_bits: u64 = (1023 as u64) << 52;
|
|
f64::from_bits(fraction | exponent_bits) - (1.0 - EPSILON / 2.0)
|
|
}
|
|
|
|
impl RandGen {
|
|
pub fn new() -> Self {
|
|
RandGen {
|
|
r: [0x193a6754a8a7d469, 0x97830e05113ba7bb],
|
|
}
|
|
}
|
|
|
|
/// Next random unsigned 64bit integer.
|
|
pub fn next(&mut self) -> u64 {
|
|
next_xoroshiro128(&mut self.r)
|
|
}
|
|
|
|
/// Next random float between `[0.0, 1.0)`.
|
|
pub fn next_open01(&mut self) -> f64 {
|
|
u64_to_open01(self.next())
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone)]
|
|
/// Random number generator based on [SplitMix64].
|
|
/// Requires two internal state variables. You may prefer [SplitMix64] or [Rng].
|
|
pub struct Rng {
|
|
sm: SplitMix64,
|
|
}
|
|
|
|
impl Rng {
|
|
pub fn new() -> Self {
|
|
Self { sm: SplitMix64::new(0x193a67f4a8a6d769) }
|
|
}
|
|
|
|
pub fn seed(&mut self, seed: u64) {
|
|
self.sm = SplitMix64::new(seed);
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next(&mut self) -> f32 {
|
|
self.sm.next_open01() as f32
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next_u64(&mut self) -> u64 {
|
|
self.sm.next_u64()
|
|
}
|
|
}
|
|
|
|
thread_local! {
|
|
static GLOBAL_RNG: RefCell<Rng> = RefCell::new(Rng::new());
|
|
}
|
|
|
|
#[inline]
|
|
pub fn rand_01() -> f32 {
|
|
GLOBAL_RNG.with(|r| r.borrow_mut().next())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn rand_u64() -> u64 {
|
|
GLOBAL_RNG.with(|r| r.borrow_mut().next_u64())
|
|
}
|
|
|
|
// Copyright 2018 Developers of the Rand project.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
//- splitmix64 (http://xoroshiro.di.unimi.it/splitmix64.c)
|
|
//
|
|
/// A splitmix64 random number generator.
|
|
///
|
|
/// The splitmix algorithm is not suitable for cryptographic purposes, but is
|
|
/// very fast and has a 64 bit state.
|
|
///
|
|
/// The algorithm used here is translated from [the `splitmix64.c`
|
|
/// reference source code](http://xoshiro.di.unimi.it/splitmix64.c) by
|
|
/// Sebastiano Vigna. For `next_u32`, a more efficient mixing function taken
|
|
/// from [`dsiutils`](http://dsiutils.di.unimi.it/) is used.
|
|
#[derive(Debug, Copy, Clone)]
|
|
pub struct SplitMix64(pub u64);
|
|
|
|
/// Internal random constant for [SplitMix64].
|
|
const PHI: u64 = 0x9e3779b97f4a7c15;
|
|
|
|
impl SplitMix64 {
|
|
pub fn new(seed: u64) -> Self { Self(seed) }
|
|
pub fn new_from_i64(seed: i64) -> Self {
|
|
Self::new(u64::from_be_bytes(seed.to_be_bytes()))
|
|
}
|
|
|
|
pub fn new_time_seed() -> Self {
|
|
use std::time::SystemTime;
|
|
|
|
match SystemTime::now().duration_since(SystemTime::UNIX_EPOCH) {
|
|
Ok(n) => Self::new(n.as_secs() as u64),
|
|
Err(_) => Self::new(123456789),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next_u64(&mut self) -> u64 {
|
|
self.0 = self.0.wrapping_add(PHI);
|
|
let mut z = self.0;
|
|
z = (z ^ (z >> 30)).wrapping_mul(0xbf58476d1ce4e5b9);
|
|
z = (z ^ (z >> 27)).wrapping_mul(0x94d049bb133111eb);
|
|
z ^ (z >> 31)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next_i64(&mut self) -> i64 {
|
|
i64::from_be_bytes(
|
|
self.next_u64().to_be_bytes())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next_open01(&mut self) -> f64 {
|
|
u64_to_open01(self.next_u64())
|
|
}
|
|
}
|
|
|
|
/// Linear crossfade.
|
|
///
|
|
/// * `v1` - signal 1, range -1.0 to 1.0
|
|
/// * `v2` - signal 2, range -1.0 to 1.0
|
|
/// * `mix` - mix position, range 0.0 to 1.0, mid is at 0.5
|
|
#[inline]
|
|
pub fn crossfade<F: Flt>(v1: F, v2: F, mix: F) -> F {
|
|
v1 * (f::<F>(1.0) - mix) + v2 * mix
|
|
}
|
|
|
|
/// Constant power crossfade.
|
|
///
|
|
/// * `v1` - signal 1, range -1.0 to 1.0
|
|
/// * `v2` - signal 2, range -1.0 to 1.0
|
|
/// * `mix` - mix position, range 0.0 to 1.0, mid is at 0.5
|
|
#[inline]
|
|
pub fn crossfade_cpow(v1: f32, v2: f32, mix: f32) -> f32 {
|
|
let s1 = (mix * std::f32::consts::FRAC_PI_2).sin();
|
|
let s2 = ((1.0 - mix) * std::f32::consts::FRAC_PI_2).sin();
|
|
v1 * s2 + v2 * s1
|
|
}
|
|
|
|
const CROSS_LOG_MIN : f32 = -13.815510557964274; // (0.000001_f32).ln();
|
|
const CROSS_LOG_MAX : f32 = 0.0; // (1.0_f32).ln();
|
|
|
|
/// Logarithmic crossfade.
|
|
///
|
|
/// * `v1` - signal 1, range -1.0 to 1.0
|
|
/// * `v2` - signal 2, range -1.0 to 1.0
|
|
/// * `mix` - mix position, range 0.0 to 1.0, mid is at 0.5
|
|
#[inline]
|
|
pub fn crossfade_log(v1: f32, v2: f32, mix: f32) -> f32 {
|
|
let x =
|
|
(mix * (CROSS_LOG_MAX - CROSS_LOG_MIN) + CROSS_LOG_MIN)
|
|
.exp();
|
|
crossfade(v1, v2, x)
|
|
}
|
|
|
|
/// Exponential crossfade.
|
|
///
|
|
/// * `v1` - signal 1, range -1.0 to 1.0
|
|
/// * `v2` - signal 2, range -1.0 to 1.0
|
|
/// * `mix` - mix position, range 0.0 to 1.0, mid is at 0.5
|
|
#[inline]
|
|
pub fn crossfade_exp(v1: f32, v2: f32, mix: f32) -> f32 {
|
|
crossfade(v1, v2, mix * mix)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn clamp(f: f32, min: f32, max: f32) -> f32 {
|
|
if f < min { min }
|
|
else if f > max { max }
|
|
else { f }
|
|
}
|
|
|
|
pub fn square_135(phase: f32) -> f32 {
|
|
fast_sin(phase)
|
|
+ fast_sin(phase * 3.0) / 3.0
|
|
+ fast_sin(phase * 5.0) / 5.0
|
|
}
|
|
|
|
pub fn square_35(phase: f32) -> f32 {
|
|
fast_sin(phase * 3.0) / 3.0
|
|
+ fast_sin(phase * 5.0) / 5.0
|
|
}
|
|
|
|
// note: MIDI note value?
|
|
pub fn note_to_freq(note: f32) -> f32 {
|
|
440.0 * (2.0_f32).powf((note - 69.0) / 12.0)
|
|
}
|
|
|
|
// Ported from LMMS under GPLv2
|
|
// * DspEffectLibrary.h - library with template-based inline-effects
|
|
// * Copyright (c) 2006-2014 Tobias Doerffel <tobydox/at/users.sourceforge.net>
|
|
//
|
|
// Original source seems to be musicdsp.org, Author: Bram de Jong
|
|
// see also: https://www.musicdsp.org/en/latest/Effects/41-waveshaper.html
|
|
// Notes:
|
|
// where x (in [-1..1] will be distorted and a is a distortion parameter
|
|
// that goes from 1 to infinity. The equation is valid for positive and
|
|
// negativ values. If a is 1, it results in a slight distortion and with
|
|
// bigger a's the signal get's more funky.
|
|
// A good thing about the shaper is that feeding it with bigger-than-one
|
|
// values, doesn't create strange fx. The maximum this function will reach
|
|
// is 1.2 for a=1.
|
|
//
|
|
// f(x,a) = x*(abs(x) + a)/(x^2 + (a-1)*abs(x) + 1)
|
|
/// Signal distortion by Bram de Jong.
|
|
/// ```text
|
|
/// gain: 0.1 - 5.0 default = 1.0
|
|
/// threshold: 0.0 - 100.0 default = 0.8
|
|
/// i: signal
|
|
/// ```
|
|
#[inline]
|
|
pub fn f_distort(gain: f32, threshold: f32, i: f32) -> f32 {
|
|
gain * (
|
|
i * ( i.abs() + threshold )
|
|
/ ( i * i + (threshold - 1.0) * i.abs() + 1.0 ))
|
|
}
|
|
|
|
// Ported from LMMS under GPLv2
|
|
// * DspEffectLibrary.h - library with template-based inline-effects
|
|
// * Copyright (c) 2006-2014 Tobias Doerffel <tobydox/at/users.sourceforge.net>
|
|
//
|
|
/// Foldback Signal distortion
|
|
/// ```text
|
|
/// gain: 0.1 - 5.0 default = 1.0
|
|
/// threshold: 0.0 - 100.0 default = 0.8
|
|
/// i: signal
|
|
/// ```
|
|
#[inline]
|
|
pub fn f_fold_distort(gain: f32, threshold: f32, i: f32) -> f32 {
|
|
if i >= threshold || i < -threshold {
|
|
gain
|
|
* ((
|
|
((i - threshold) % threshold * 4.0).abs()
|
|
- threshold * 2.0).abs()
|
|
- threshold)
|
|
} else {
|
|
gain * i
|
|
}
|
|
}
|
|
|
|
pub fn lerp(x: f32, a: f32, b: f32) -> f32 {
|
|
(a * (1.0 - x)) + (b * x)
|
|
}
|
|
|
|
pub fn lerp64(x: f64, a: f64, b: f64) -> f64 {
|
|
(a * (1.0 - x)) + (b * x)
|
|
}
|
|
|
|
pub fn p2range(x: f32, a: f32, b: f32) -> f32 {
|
|
lerp(x, a, b)
|
|
}
|
|
|
|
pub fn p2range_exp(x: f32, a: f32, b: f32) -> f32 {
|
|
let x = x * x;
|
|
(a * (1.0 - x)) + (b * x)
|
|
}
|
|
|
|
pub fn p2range_exp4(x: f32, a: f32, b: f32) -> f32 {
|
|
let x = x * x * x * x;
|
|
(a * (1.0 - x)) + (b * x)
|
|
}
|
|
|
|
|
|
pub fn range2p(v: f32, a: f32, b: f32) -> f32 {
|
|
((v - a) / (b - a)).abs()
|
|
}
|
|
|
|
pub fn range2p_exp(v: f32, a: f32, b: f32) -> f32 {
|
|
(((v - a) / (b - a)).abs()).sqrt()
|
|
}
|
|
|
|
pub fn range2p_exp4(v: f32, a: f32, b: f32) -> f32 {
|
|
(((v - a) / (b - a)).abs()).sqrt().sqrt()
|
|
}
|
|
|
|
/// ```text
|
|
/// gain: 24.0 - -90.0 default = 0.0
|
|
/// ```
|
|
pub fn gain2coef(gain: f32) -> f32 {
|
|
if gain > -90.0 {
|
|
10.0_f32.powf(gain * 0.05)
|
|
} else {
|
|
0.0
|
|
}
|
|
}
|
|
|
|
// quickerTanh / quickerTanh64 credits to mopo synthesis library:
|
|
// Under GPLv3 or any later.
|
|
// Little IO <littleioaudio@gmail.com>
|
|
// Matt Tytel <matthewtytel@gmail.com>
|
|
pub fn quicker_tanh64(v: f64) -> f64 {
|
|
let square = v * v;
|
|
v / (1.0 + square / (3.0 + square / 5.0))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn quicker_tanh(v: f32) -> f32 {
|
|
let square = v * v;
|
|
v / (1.0 + square / (3.0 + square / 5.0))
|
|
}
|
|
|
|
// quickTanh / quickTanh64 credits to mopo synthesis library:
|
|
// Under GPLv3 or any later.
|
|
// Little IO <littleioaudio@gmail.com>
|
|
// Matt Tytel <matthewtytel@gmail.com>
|
|
pub fn quick_tanh64(v: f64) -> f64 {
|
|
let abs_v = v.abs();
|
|
let square = v * v;
|
|
let num =
|
|
v * (2.45550750702956
|
|
+ 2.45550750702956 * abs_v
|
|
+ square * (0.893229853513558
|
|
+ 0.821226666969744 * abs_v));
|
|
let den =
|
|
2.44506634652299
|
|
+ (2.44506634652299 + square)
|
|
* (v + 0.814642734961073 * v * abs_v).abs();
|
|
|
|
num / den
|
|
}
|
|
|
|
pub fn quick_tanh(v: f32) -> f32 {
|
|
let abs_v = v.abs();
|
|
let square = v * v;
|
|
let num =
|
|
v * (2.45550750702956
|
|
+ 2.45550750702956 * abs_v
|
|
+ square * (0.893229853513558
|
|
+ 0.821226666969744 * abs_v));
|
|
let den =
|
|
2.44506634652299
|
|
+ (2.44506634652299 + square)
|
|
* (v + 0.814642734961073 * v * abs_v).abs();
|
|
|
|
num / den
|
|
}
|
|
|
|
/// A helper function for exponential envelopes.
|
|
/// It's a bit faster than calling the `pow` function of Rust.
|
|
///
|
|
/// * `x` the input value
|
|
/// * `v' the shape value.
|
|
/// Which is linear at `0.5`, the forth root of `x` at `1.0` and x to the power
|
|
/// of 4 at `0.0`. You can vary `v` as you like.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
///
|
|
/// assert!(((sqrt4_to_pow4(0.25, 0.0) - 0.25_f32 * 0.25 * 0.25 * 0.25)
|
|
/// .abs() - 1.0)
|
|
/// < 0.0001);
|
|
///
|
|
/// assert!(((sqrt4_to_pow4(0.25, 1.0) - (0.25_f32).sqrt().sqrt())
|
|
/// .abs() - 1.0)
|
|
/// < 0.0001);
|
|
///
|
|
/// assert!(((sqrt4_to_pow4(0.25, 0.5) - 0.25_f32).abs() - 1.0) < 0.0001);
|
|
///```
|
|
#[inline]
|
|
pub fn sqrt4_to_pow4(x: f32, v: f32) -> f32 {
|
|
if v > 0.75 {
|
|
let xsq1 = x.sqrt();
|
|
let xsq = xsq1.sqrt();
|
|
let v = (v - 0.75) * 4.0;
|
|
xsq1 * (1.0 - v) + xsq * v
|
|
|
|
} else if v > 0.5 {
|
|
let xsq = x.sqrt();
|
|
let v = (v - 0.5) * 4.0;
|
|
x * (1.0 - v) + xsq * v
|
|
|
|
} else if v > 0.25 {
|
|
let xx = x * x;
|
|
let v = (v - 0.25) * 4.0;
|
|
x * v + xx * (1.0 - v)
|
|
|
|
} else {
|
|
let xx = x * x;
|
|
let xxxx = xx * xx;
|
|
let v = v * 4.0;
|
|
xx * v + xxxx * (1.0 - v)
|
|
}
|
|
}
|
|
|
|
/// A-100 Eurorack states, that a trigger is usually 2-10 milliseconds.
|
|
pub const TRIG_SIGNAL_LENGTH_MS : f32 = 2.0;
|
|
|
|
/// The lower threshold for the schmidt trigger to reset.
|
|
pub const TRIG_LOW_THRES : f32 = 0.25;
|
|
/// The threshold, once reached, will cause a trigger event and signals
|
|
/// a logical '1'. Anything below this is a logical '0'.
|
|
pub const TRIG_HIGH_THRES : f32 = 0.5;
|
|
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct TrigSignal {
|
|
length: u32,
|
|
scount: u32,
|
|
}
|
|
|
|
impl TrigSignal {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
length: ((44100.0 * TRIG_SIGNAL_LENGTH_MS) / 1000.0).ceil() as u32,
|
|
scount: 0,
|
|
}
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.scount = 0;
|
|
}
|
|
|
|
pub fn set_sample_rate(&mut self, srate: f32) {
|
|
self.length = ((srate * TRIG_SIGNAL_LENGTH_MS) / 1000.0).ceil() as u32;
|
|
self.scount = 0;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn trigger(&mut self) { self.scount = self.length; }
|
|
|
|
#[inline]
|
|
pub fn next(&mut self) -> f32 {
|
|
if self.scount > 0 {
|
|
self.scount -= 1;
|
|
1.0
|
|
} else {
|
|
0.0
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Default for TrigSignal {
|
|
fn default() -> Self { Self::new() }
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct Trigger {
|
|
triggered: bool,
|
|
}
|
|
|
|
impl Trigger {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
triggered: false,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn reset(&mut self) {
|
|
self.triggered = false;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn check_trigger(&mut self, input: f32) -> bool {
|
|
if self.triggered {
|
|
if input <= TRIG_LOW_THRES {
|
|
self.triggered = false;
|
|
}
|
|
|
|
false
|
|
|
|
} else if input > TRIG_HIGH_THRES {
|
|
self.triggered = true;
|
|
true
|
|
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct TriggerPhaseClock {
|
|
clock_phase: f64,
|
|
clock_inc: f64,
|
|
prev_trigger: bool,
|
|
clock_samples: u32,
|
|
}
|
|
|
|
impl TriggerPhaseClock {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
clock_phase: 0.0,
|
|
clock_inc: 0.0,
|
|
prev_trigger: true,
|
|
clock_samples: 0,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn reset(&mut self) {
|
|
self.clock_samples = 0;
|
|
self.clock_inc = 0.0;
|
|
self.prev_trigger = true;
|
|
self.clock_samples = 0;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn sync(&mut self) {
|
|
self.clock_phase = 0.0;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next_phase(&mut self, clock_limit: f64, trigger_in: f32) -> f64 {
|
|
if self.prev_trigger {
|
|
if trigger_in <= TRIG_LOW_THRES {
|
|
self.prev_trigger = false;
|
|
}
|
|
|
|
} else if trigger_in > TRIG_HIGH_THRES {
|
|
self.prev_trigger = true;
|
|
|
|
if self.clock_samples > 0 {
|
|
self.clock_inc =
|
|
1.0 / (self.clock_samples as f64);
|
|
}
|
|
|
|
self.clock_samples = 0;
|
|
}
|
|
|
|
self.clock_samples += 1;
|
|
|
|
self.clock_phase += self.clock_inc;
|
|
self.clock_phase = self.clock_phase % clock_limit;
|
|
|
|
self.clock_phase
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct TriggerSampleClock {
|
|
prev_trigger: bool,
|
|
clock_samples: u32,
|
|
counter: u32,
|
|
}
|
|
|
|
impl TriggerSampleClock {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
prev_trigger: true,
|
|
clock_samples: 0,
|
|
counter: 0,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn reset(&mut self) {
|
|
self.clock_samples = 0;
|
|
self.counter = 0;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next(&mut self, trigger_in: f32) -> u32 {
|
|
if self.prev_trigger {
|
|
if trigger_in <= TRIG_LOW_THRES {
|
|
self.prev_trigger = false;
|
|
}
|
|
|
|
} else if trigger_in > TRIG_HIGH_THRES {
|
|
self.prev_trigger = true;
|
|
self.clock_samples = self.counter;
|
|
self.counter = 0;
|
|
}
|
|
|
|
self.counter += 1;
|
|
|
|
self.clock_samples
|
|
}
|
|
}
|
|
|
|
/// A slew rate limiter, with a configurable time per 1.0 increase.
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct SlewValue<F: Flt> {
|
|
current: F,
|
|
slew_per_ms: F,
|
|
}
|
|
|
|
impl<F: Flt> SlewValue<F> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
current: f(0.0),
|
|
slew_per_ms: f(1000.0 / 44100.0),
|
|
}
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.current = f(0.0);
|
|
}
|
|
|
|
pub fn set_sample_rate(&mut self, srate: F) {
|
|
self.slew_per_ms = f::<F>(1000.0) / srate;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn value(&self) -> F { self.current }
|
|
|
|
/// * `slew_ms_per_1` - The time (in milliseconds) it should take
|
|
/// to get to 1.0 from 0.0.
|
|
#[inline]
|
|
pub fn next(&mut self, target: F, slew_ms_per_1: F) -> F {
|
|
// at 0.11ms, there are barely enough samples for proper slew.
|
|
if slew_ms_per_1 < f(0.11) {
|
|
self.current = target;
|
|
|
|
} else {
|
|
let max_delta = self.slew_per_ms / slew_ms_per_1;
|
|
self.current =
|
|
target
|
|
.min(self.current + max_delta)
|
|
.max(self.current - max_delta);
|
|
}
|
|
|
|
self.current
|
|
}
|
|
}
|
|
|
|
/// A ramped value changer, with a configurable time to reach the target value.
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct RampValue<F: Flt> {
|
|
slew_count: u64,
|
|
current: F,
|
|
target: F,
|
|
inc: F,
|
|
sr_ms: F,
|
|
}
|
|
|
|
impl<F: Flt> RampValue<F> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
slew_count: 0,
|
|
current: f(0.0),
|
|
target: f(0.0),
|
|
inc: f(0.0),
|
|
sr_ms: f(44100.0 / 1000.0),
|
|
}
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.slew_count = 0;
|
|
self.current = f(0.0);
|
|
self.target = f(0.0);
|
|
self.inc = f(0.0);
|
|
}
|
|
|
|
pub fn set_sample_rate(&mut self, srate: F) {
|
|
self.sr_ms = srate / f(1000.0);
|
|
}
|
|
|
|
#[inline]
|
|
pub fn set_target(&mut self, target: F, slew_time_ms: F) {
|
|
self.target = target;
|
|
|
|
// 0.02ms, thats a fraction of a sample at 44.1kHz
|
|
if slew_time_ms < f(0.02) {
|
|
self.current = self.target;
|
|
self.slew_count = 0;
|
|
|
|
} else {
|
|
let slew_samples = slew_time_ms * self.sr_ms;
|
|
self.slew_count = slew_samples.to_u64().unwrap_or(0);
|
|
self.inc = (self.target - self.current) / slew_samples;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn value(&self) -> F { self.current }
|
|
|
|
#[inline]
|
|
pub fn next(&mut self) -> F {
|
|
if self.slew_count > 0 {
|
|
self.current = self.current + self.inc;
|
|
self.slew_count -= 1;
|
|
} else {
|
|
self.current = self.target;
|
|
}
|
|
|
|
self.current
|
|
}
|
|
}
|
|
|
|
/// Default size of the delay buffer: 5 seconds at 8 times 48kHz
|
|
const DEFAULT_DELAY_BUFFER_SAMPLES : usize = 8 * 48000 * 5;
|
|
|
|
macro_rules! fc {
|
|
($F: ident, $e: expr) => { F::from_f64($e).unwrap() }
|
|
}
|
|
|
|
#[inline]
|
|
fn f<F: Flt>(x: f64) -> F { F::from_f64(x).unwrap() }
|
|
fn fclamp<F: Flt>(x: F, mi: F, mx: F) -> F { x.max(mi).min(mx) }
|
|
fn fclampc<F: Flt>(x: F, mi: f64, mx: f64) -> F { x.max(f(mi)).min(f(mx)) }
|
|
|
|
#[derive(Debug, Clone, Default)]
|
|
pub struct DelayBuffer<F: Flt> {
|
|
data: Vec<F>,
|
|
wr: usize,
|
|
srate: F,
|
|
}
|
|
|
|
impl<F: Flt> DelayBuffer<F> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
data: vec![f(0.0); DEFAULT_DELAY_BUFFER_SAMPLES],
|
|
wr: 0,
|
|
srate: f(44100.0),
|
|
}
|
|
}
|
|
|
|
pub fn new_with_size(size: usize) -> Self {
|
|
Self {
|
|
data: vec![f(0.0); size],
|
|
wr: 0,
|
|
srate: f(44100.0),
|
|
}
|
|
}
|
|
|
|
pub fn set_sample_rate(&mut self, srate: F) {
|
|
self.srate = srate;
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.data.fill(f(0.0));
|
|
self.wr = 0;
|
|
}
|
|
|
|
/// Feed one sample into the delay line and increment the write pointer.
|
|
/// Please note: For sample accurate feedback you need to retrieve the
|
|
/// output of the delay line before feeding in a new signal.
|
|
#[inline]
|
|
pub fn feed(&mut self, input: F) {
|
|
self.data[self.wr] = input;
|
|
self.wr = (self.wr + 1) % self.data.len();
|
|
}
|
|
|
|
/// Combines [DelayBuffer::cubic_interpolate_at] and [DelayBuffer::feed]
|
|
/// into one convenient function.
|
|
#[inline]
|
|
pub fn next_cubic(&mut self, delay_time_ms: F, input: F) -> F {
|
|
let res = self.cubic_interpolate_at(delay_time_ms);
|
|
self.feed(input);
|
|
res
|
|
}
|
|
|
|
/// Combines [DelayBuffer::linear_interpolate_at] and [DelayBuffer::feed]
|
|
/// into one convenient function.
|
|
#[inline]
|
|
pub fn next_linear(&mut self, delay_time_ms: F, input: F) -> F {
|
|
let res = self.linear_interpolate_at(delay_time_ms);
|
|
self.feed(input);
|
|
res
|
|
}
|
|
|
|
/// Combines [DelayBuffer::nearest_at] and [DelayBuffer::feed]
|
|
/// into one convenient function.
|
|
#[inline]
|
|
pub fn next_nearest(&mut self, delay_time_ms: F, input: F) -> F {
|
|
let res = self.nearest_at(delay_time_ms);
|
|
self.feed(input);
|
|
res
|
|
}
|
|
|
|
/// Shorthand for [DelayBuffer::cubic_interpolate_at].
|
|
#[inline]
|
|
pub fn tap_c(&self, delay_time_ms: F) -> F {
|
|
self.cubic_interpolate_at(delay_time_ms)
|
|
}
|
|
|
|
/// Shorthand for [DelayBuffer::cubic_interpolate_at].
|
|
#[inline]
|
|
pub fn tap_n(&self, delay_time_ms: F) -> F {
|
|
self.nearest_at(delay_time_ms)
|
|
}
|
|
|
|
/// Shorthand for [DelayBuffer::cubic_interpolate_at].
|
|
#[inline]
|
|
pub fn tap_l(&self, delay_time_ms: F) -> F {
|
|
self.linear_interpolate_at(delay_time_ms)
|
|
}
|
|
|
|
/// Fetch a sample from the delay buffer at the given time.
|
|
///
|
|
/// * `delay_time_ms` - Delay time in milliseconds.
|
|
pub fn linear_interpolate_at(&self, delay_time_ms: F) -> F {
|
|
let data = &self.data[..];
|
|
let len = data.len();
|
|
let s_offs = (delay_time_ms * self.srate) / f(1000.0);
|
|
let offs = s_offs.floor().to_usize().unwrap_or(0) % len;
|
|
let fract = s_offs.fract();
|
|
|
|
let i = (self.wr + len) - offs;
|
|
let x0 = data[i % len];
|
|
let x1 = data[(i - 1) % len];
|
|
|
|
x0 + fract * (x1 - x0)
|
|
}
|
|
|
|
/// Fetch a sample from the delay buffer at the given time.
|
|
///
|
|
/// * `delay_time_ms` - Delay time in milliseconds.
|
|
#[inline]
|
|
pub fn cubic_interpolate_at(&self, delay_time_ms: F) -> F {
|
|
let data = &self.data[..];
|
|
let len = data.len();
|
|
let s_offs = (delay_time_ms * self.srate) / f(1000.0);
|
|
let offs = s_offs.floor().to_usize().unwrap_or(0) % len;
|
|
let fract = s_offs.fract();
|
|
|
|
let i = (self.wr + len) - offs;
|
|
|
|
// Hermite interpolation, take from
|
|
// https://github.com/eric-wood/delay/blob/main/src/delay.rs#L52
|
|
//
|
|
// Thanks go to Eric Wood!
|
|
//
|
|
// For the interpolation code:
|
|
// MIT License, Copyright (c) 2021 Eric Wood
|
|
let xm1 = data[(i + 1) % len];
|
|
let x0 = data[i % len];
|
|
let x1 = data[(i - 1) % len];
|
|
let x2 = data[(i - 2) % len];
|
|
|
|
let c = (x1 - xm1) * f(0.5);
|
|
let v = x0 - x1;
|
|
let w = c + v;
|
|
let a = w + v + (x2 - x0) * f(0.5);
|
|
let b_neg = w + a;
|
|
|
|
let fract = fract as F;
|
|
(((a * fract) - b_neg) * fract + c) * fract + x0
|
|
}
|
|
|
|
#[inline]
|
|
pub fn nearest_at(&self, delay_time_ms: F) -> F {
|
|
let len = self.data.len();
|
|
let offs =
|
|
((delay_time_ms * self.srate)
|
|
/ f(1000.0))
|
|
.floor().to_usize().unwrap_or(0) % len;
|
|
let idx = ((self.wr + len) - offs) % len;
|
|
self.data[idx]
|
|
}
|
|
|
|
#[inline]
|
|
pub fn at(&self, delay_sample_count: usize) -> F {
|
|
let len = self.data.len();
|
|
let idx = ((self.wr + len) - delay_sample_count) % len;
|
|
self.data[idx]
|
|
}
|
|
}
|
|
|
|
/// Default size of the delay buffer: 1 seconds at 8 times 48kHz
|
|
const DEFAULT_ALLPASS_COMB_SAMPLES : usize = 8 * 48000;
|
|
|
|
#[derive(Debug, Clone, Default)]
|
|
pub struct AllPass<F: Flt> {
|
|
delay: DelayBuffer<F>,
|
|
}
|
|
|
|
impl<F: Flt> AllPass<F> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
delay: DelayBuffer::new_with_size(DEFAULT_ALLPASS_COMB_SAMPLES),
|
|
}
|
|
}
|
|
|
|
pub fn set_sample_rate(&mut self, srate: F) {
|
|
self.delay.set_sample_rate(srate);
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.delay.reset();
|
|
}
|
|
|
|
#[inline]
|
|
pub fn delay_tap_n(&self, time_ms: F) -> F {
|
|
self.delay.tap_n(time_ms)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next(&mut self, time_ms: F, g: F, v: F) -> F {
|
|
let s = self.delay.cubic_interpolate_at(time_ms);
|
|
let input = v + -g * s;
|
|
self.delay.feed(input);
|
|
input * g + s
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct Comb {
|
|
delay: DelayBuffer<f32>,
|
|
}
|
|
|
|
impl Comb {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
delay: DelayBuffer::new_with_size(DEFAULT_ALLPASS_COMB_SAMPLES),
|
|
}
|
|
}
|
|
|
|
pub fn set_sample_rate(&mut self, srate: f32) {
|
|
self.delay.set_sample_rate(srate);
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.delay.reset();
|
|
}
|
|
|
|
#[inline]
|
|
pub fn delay_tap_c(&self, time_ms: f32) -> f32 {
|
|
self.delay.tap_c(time_ms)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn delay_tap_n(&self, time_ms: f32) -> f32 {
|
|
self.delay.tap_n(time_ms)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next_feedback(&mut self, time: f32, g: f32, v: f32) -> f32 {
|
|
let s = self.delay.cubic_interpolate_at(time);
|
|
let v = v + s * g;
|
|
self.delay.feed(v);
|
|
v
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next_feedforward(&mut self, time: f32, g: f32, v: f32) -> f32 {
|
|
let s = self.delay.next_cubic(time, v);
|
|
v + s * g
|
|
}
|
|
}
|
|
|
|
// one pole lp from valley rack free:
|
|
// https://github.com/ValleyAudio/ValleyRackFree/blob/v1.0/src/Common/DSP/OnePoleFilters.cpp
|
|
#[inline]
|
|
/// Process a very simple one pole 6dB low pass filter.
|
|
/// Useful in various applications, from usage in a synthesizer to
|
|
/// damping stuff in a reverb/delay.
|
|
///
|
|
/// * `input` - Input sample
|
|
/// * `freq` - Frequency between 1.0 and 22000.0Hz
|
|
/// * `israte` - 1.0 / samplerate
|
|
/// * `z` - The internal one sample buffer of the filter.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
///
|
|
/// let samples = vec![0.0; 44100];
|
|
/// let mut z = 0.0;
|
|
/// let mut freq = 1000.0;
|
|
///
|
|
/// for s in samples.iter() {
|
|
/// let s_out =
|
|
/// process_1pole_lowpass(*s, freq, 1.0 / 44100.0, &mut z);
|
|
/// // ... do something with the result here.
|
|
/// }
|
|
///```
|
|
pub fn process_1pole_lowpass(input: f32, freq: f32, israte: f32, z: &mut f32) -> f32 {
|
|
let b = (-std::f32::consts::TAU * freq * israte).exp();
|
|
let a = 1.0 - b;
|
|
*z = a * input + *z * b;
|
|
*z
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, Default)]
|
|
pub struct OnePoleLPF<F: Flt> {
|
|
israte: F,
|
|
a: F,
|
|
b: F,
|
|
freq: F,
|
|
z: F,
|
|
}
|
|
|
|
impl<F: Flt> OnePoleLPF<F> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
israte: f::<F>(1.0) / f(44100.0),
|
|
a: f::<F>(0.0),
|
|
b: f::<F>(0.0),
|
|
freq: f::<F>(1000.0),
|
|
z: f::<F>(0.0),
|
|
}
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.z = f(0.0);
|
|
}
|
|
|
|
#[inline]
|
|
fn recalc(&mut self) {
|
|
self.b = (f::<F>(-1.0) * F::TAU() * self.freq * self.israte).exp();
|
|
self.a = f::<F>(1.0) - self.b;
|
|
}
|
|
|
|
pub fn set_sample_rate(&mut self, srate: F) {
|
|
self.israte = f::<F>(1.0) / srate;
|
|
self.recalc();
|
|
}
|
|
|
|
#[inline]
|
|
pub fn set_freq(&mut self, freq: F) {
|
|
if freq != self.freq {
|
|
self.freq = freq;
|
|
self.recalc();
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn process(&mut self, input: F) -> F {
|
|
self.z = self.a * input + self.z * self.b;
|
|
self.z
|
|
}
|
|
}
|
|
|
|
// one pole hp from valley rack free:
|
|
// https://github.com/ValleyAudio/ValleyRackFree/blob/v1.0/src/Common/DSP/OnePoleFilters.cpp
|
|
#[inline]
|
|
/// Process a very simple one pole 6dB high pass filter.
|
|
/// Useful in various applications.
|
|
///
|
|
/// * `input` - Input sample
|
|
/// * `freq` - Frequency between 1.0 and 22000.0Hz
|
|
/// * `israte` - 1.0 / samplerate
|
|
/// * `z` - The first internal buffer of the filter.
|
|
/// * `y` - The second internal buffer of the filter.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
///
|
|
/// let samples = vec![0.0; 44100];
|
|
/// let mut z = 0.0;
|
|
/// let mut y = 0.0;
|
|
/// let mut freq = 1000.0;
|
|
///
|
|
/// for s in samples.iter() {
|
|
/// let s_out =
|
|
/// process_1pole_highpass(*s, freq, 1.0 / 44100.0, &mut z, &mut y);
|
|
/// // ... do something with the result here.
|
|
/// }
|
|
///```
|
|
pub fn process_1pole_highpass(input: f32, freq: f32, israte: f32, z: &mut f32, y: &mut f32) -> f32 {
|
|
let b = (-std::f32::consts::TAU * freq * israte).exp();
|
|
let a = (1.0 + b) / 2.0;
|
|
|
|
let v =
|
|
a * input
|
|
- a * *z
|
|
+ b * *y;
|
|
*y = v;
|
|
*z = input;
|
|
v
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, Default)]
|
|
pub struct OnePoleHPF<F: Flt> {
|
|
israte: F,
|
|
a: F,
|
|
b: F,
|
|
freq: F,
|
|
z: F,
|
|
y: F,
|
|
}
|
|
|
|
impl<F: Flt> OnePoleHPF<F> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
israte: f(1.0 / 44100.0),
|
|
a: f(0.0),
|
|
b: f(0.0),
|
|
freq: f(1000.0),
|
|
z: f(0.0),
|
|
y: f(0.0),
|
|
}
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.z = f(0.0);
|
|
self.y = f(0.0);
|
|
}
|
|
|
|
#[inline]
|
|
fn recalc(&mut self) {
|
|
self.b = (f::<F>(-1.0) * F::TAU() * self.freq * self.israte).exp();
|
|
self.a = (f::<F>(1.0) + self.b) / f(2.0);
|
|
}
|
|
|
|
|
|
pub fn set_sample_rate(&mut self, srate: F) {
|
|
self.israte = f::<F>(1.0) / srate;
|
|
self.recalc();
|
|
}
|
|
|
|
#[inline]
|
|
pub fn set_freq(&mut self, freq: F) {
|
|
if freq != self.freq {
|
|
self.freq = freq;
|
|
self.recalc();
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn process(&mut self, input: F) -> F {
|
|
let v =
|
|
self.a * input
|
|
- self.a * self.z
|
|
+ self.b * self.y;
|
|
|
|
self.y = v;
|
|
self.z = input;
|
|
|
|
v
|
|
}
|
|
}
|
|
|
|
|
|
// one pole from:
|
|
// http://www.willpirkle.com/Downloads/AN-4VirtualAnalogFilters.pdf
|
|
// (page 5)
|
|
#[inline]
|
|
/// Process a very simple one pole 6dB low pass filter in TPT form.
|
|
/// Useful in various applications, from usage in a synthesizer to
|
|
/// damping stuff in a reverb/delay.
|
|
///
|
|
/// * `input` - Input sample
|
|
/// * `freq` - Frequency between 1.0 and 22000.0Hz
|
|
/// * `israte` - 1.0 / samplerate
|
|
/// * `z` - The internal one sample buffer of the filter.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
///
|
|
/// let samples = vec![0.0; 44100];
|
|
/// let mut z = 0.0;
|
|
/// let mut freq = 1000.0;
|
|
///
|
|
/// for s in samples.iter() {
|
|
/// let s_out =
|
|
/// process_1pole_tpt_highpass(*s, freq, 1.0 / 44100.0, &mut z);
|
|
/// // ... do something with the result here.
|
|
/// }
|
|
///```
|
|
pub fn process_1pole_tpt_lowpass(input: f32, freq: f32, israte: f32, z: &mut f32) -> f32 {
|
|
let g = (std::f32::consts::PI * freq * israte).tan();
|
|
let a = g / (1.0 + g);
|
|
|
|
let v1 = a * (input - *z);
|
|
let v2 = v1 + *z;
|
|
*z = v2 + v1;
|
|
|
|
// let (m0, m1) = (0.0, 1.0);
|
|
// (m0 * input + m1 * v2) as f32);
|
|
v2
|
|
}
|
|
|
|
// one pole from:
|
|
// http://www.willpirkle.com/Downloads/AN-4VirtualAnalogFilters.pdf
|
|
// (page 5)
|
|
#[inline]
|
|
/// Process a very simple one pole 6dB high pass filter in TPT form.
|
|
/// Useful in various applications.
|
|
///
|
|
/// * `input` - Input sample
|
|
/// * `freq` - Frequency between 1.0 and 22000.0Hz
|
|
/// * `israte` - 1.0 / samplerate
|
|
/// * `z` - The internal one sample buffer of the filter.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
///
|
|
/// let samples = vec![0.0; 44100];
|
|
/// let mut z = 0.0;
|
|
/// let mut freq = 1000.0;
|
|
///
|
|
/// for s in samples.iter() {
|
|
/// let s_out =
|
|
/// process_1pole_tpt_lowpass(*s, freq, 1.0 / 44100.0, &mut z);
|
|
/// // ... do something with the result here.
|
|
/// }
|
|
///```
|
|
pub fn process_1pole_tpt_highpass(input: f32, freq: f32, israte: f32, z: &mut f32) -> f32 {
|
|
let g = (std::f32::consts::PI * freq * israte).tan();
|
|
let a1 = g / (1.0 + g);
|
|
|
|
let v1 = a1 * (input - *z);
|
|
let v2 = v1 + *z;
|
|
*z = v2 + v1;
|
|
|
|
input - v2
|
|
}
|
|
|
|
/// The internal oversampling factor of [process_hal_chamberlin_svf].
|
|
const FILTER_OVERSAMPLE_HAL_CHAMBERLIN : usize = 2;
|
|
// Hal Chamberlin's State Variable (12dB/oct) filter
|
|
// https://www.earlevel.com/main/2003/03/02/the-digital-state-variable-filter/
|
|
// Inspired by SynthV1 by Rui Nuno Capela, under the terms of
|
|
// GPLv2 or any later:
|
|
/// Process a HAL Chamberlin filter with two delays/state variables that is 12dB.
|
|
/// The filter does internal oversampling with very simple decimation to
|
|
/// rise the stability for cutoff frequency up to 16kHz.
|
|
///
|
|
/// * `input` - Input sample.
|
|
/// * `freq` - Frequency in Hz. Please keep it inside 0.0 to 16000.0 Hz!
|
|
/// otherwise the filter becomes unstable.
|
|
/// * `res` - Resonance from 0.0 to 0.99. Resonance of 1.0 is not recommended,
|
|
/// as the filter will then oscillate itself out of control.
|
|
/// * `israte` - 1.0 divided by the sampling rate (eg. 1.0 / 44100.0).
|
|
/// * `band` - First state variable, containing the band pass result
|
|
/// after processing.
|
|
/// * `low` - Second state variable, containing the low pass result
|
|
/// after processing.
|
|
///
|
|
/// Returned are the results of the high and notch filter.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
///
|
|
/// let samples = vec![0.0; 44100];
|
|
/// let mut band = 0.0;
|
|
/// let mut low = 0.0;
|
|
/// let mut freq = 1000.0;
|
|
///
|
|
/// for s in samples.iter() {
|
|
/// let (high, notch) =
|
|
/// process_hal_chamberlin_svf(
|
|
/// *s, freq, 0.5, 1.0 / 44100.0, &mut band, &mut low);
|
|
/// // ... do something with the result here.
|
|
/// }
|
|
///```
|
|
#[inline]
|
|
pub fn process_hal_chamberlin_svf(
|
|
input: f32, freq: f32, res: f32, israte: f32, band: &mut f32, low: &mut f32)
|
|
-> (f32, f32)
|
|
{
|
|
let q = 1.0 - res;
|
|
let cutoff = 2.0 * (std::f32::consts::PI * freq * 0.5 * israte).sin();
|
|
|
|
let mut high = 0.0;
|
|
let mut notch = 0.0;
|
|
|
|
for _ in 0..FILTER_OVERSAMPLE_HAL_CHAMBERLIN {
|
|
*low += cutoff * *band;
|
|
high = input - *low - q * *band;
|
|
*band += cutoff * high;
|
|
notch = high + *low;
|
|
}
|
|
|
|
//d// println!("q={:4.2} cut={:8.3} freq={:8.1} LP={:8.3} HP={:8.3} BP={:8.3} N={:8.3}",
|
|
//d// q, cutoff, freq, *low, high, *band, notch);
|
|
|
|
(high, notch)
|
|
}
|
|
|
|
/// This function processes a Simper SVF with 12dB. It's a much newer algorithm
|
|
/// for filtering and provides easy to calculate multiple outputs.
|
|
///
|
|
/// * `input` - Input sample.
|
|
/// * `freq` - Frequency in Hz.
|
|
/// otherwise the filter becomes unstable.
|
|
/// * `res` - Resonance from 0.0 to 0.99. Resonance of 1.0 is not recommended,
|
|
/// as the filter will then oscillate itself out of control.
|
|
/// * `israte` - 1.0 divided by the sampling rate (eg. 1.0 / 44100.0).
|
|
/// * `band` - First state variable, containing the band pass result
|
|
/// after processing.
|
|
/// * `low` - Second state variable, containing the low pass result
|
|
/// after processing.
|
|
///
|
|
/// This function returns the low pass, band pass and high pass signal.
|
|
/// For a notch or peak filter signal, please consult the following example:
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
///
|
|
/// let samples = vec![0.0; 44100];
|
|
/// let mut ic1eq = 0.0;
|
|
/// let mut ic2eq = 0.0;
|
|
/// let mut freq = 1000.0;
|
|
///
|
|
/// for s in samples.iter() {
|
|
/// let (low, band, high) =
|
|
/// process_simper_svf(
|
|
/// *s, freq, 0.5, 1.0 / 44100.0, &mut ic1eq, &mut ic2eq);
|
|
///
|
|
/// // You can easily calculate the notch and peak results too:
|
|
/// let notch = low + high;
|
|
/// let peak = low - high;
|
|
/// // ... do something with the result here.
|
|
/// }
|
|
///```
|
|
// Simper SVF implemented from
|
|
// https://cytomic.com/files/dsp/SvfLinearTrapezoidalSin.pdf
|
|
// Big thanks go to Andrew Simper @ Cytomic for developing and publishing
|
|
// the paper.
|
|
#[inline]
|
|
pub fn process_simper_svf(
|
|
input: f32, freq: f32, res: f32, israte: f32, ic1eq: &mut f32, ic2eq: &mut f32
|
|
) -> (f32, f32, f32) {
|
|
// XXX: the 1.989 were tuned by hand, so the resonance is more audible.
|
|
let k = 2f32 - (1.989f32 * res);
|
|
let w = std::f32::consts::PI * freq * israte;
|
|
|
|
let s1 = w.sin();
|
|
let s2 = (2.0 * w).sin();
|
|
let nrm = 1.0 / (2.0 + k * s2);
|
|
|
|
let g0 = s2 * nrm;
|
|
let g1 = (-2.0 * s1 * s1 - k * s2) * nrm;
|
|
let g2 = (2.0 * s1 * s1) * nrm;
|
|
|
|
let t0 = input - *ic2eq;
|
|
let t1 = g0 * t0 + g1 * *ic1eq;
|
|
let t2 = g2 * t0 + g0 * *ic1eq;
|
|
|
|
let v1 = t1 + *ic1eq;
|
|
let v2 = t2 + *ic2eq;
|
|
|
|
*ic1eq += 2.0 * t1;
|
|
*ic2eq += 2.0 * t2;
|
|
|
|
// low = v2
|
|
// band = v1
|
|
// high = input - k * v1 - v2
|
|
// notch = low + high = input - k * v1
|
|
// peak = low - high = 2 * v2 - input + k * v1
|
|
// all = low + high - k * band = input - 2 * k * v1
|
|
|
|
(v2, v1, input - k * v1 - v2)
|
|
}
|
|
|
|
/// This function implements a simple Stilson/Moog low pass filter with 24dB.
|
|
/// It provides only a low pass output.
|
|
///
|
|
/// * `input` - Input sample.
|
|
/// * `freq` - Frequency in Hz.
|
|
/// otherwise the filter becomes unstable.
|
|
/// * `res` - Resonance from 0.0 to 0.99. Resonance of 1.0 is not recommended,
|
|
/// as the filter will then oscillate itself out of control.
|
|
/// * `israte` - 1.0 divided by the sampling rate (`1.0 / 44100.0`).
|
|
/// * `b0` to `b3` - Internal values used for filtering.
|
|
/// * `delay` - A buffer holding other delayed samples.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::*;
|
|
///
|
|
/// let samples = vec![0.0; 44100];
|
|
/// let mut b0 = 0.0;
|
|
/// let mut b1 = 0.0;
|
|
/// let mut b2 = 0.0;
|
|
/// let mut b3 = 0.0;
|
|
/// let mut delay = [0.0; 4];
|
|
/// let mut freq = 1000.0;
|
|
///
|
|
/// for s in samples.iter() {
|
|
/// let low =
|
|
/// process_stilson_moog(
|
|
/// *s, freq, 0.5, 1.0 / 44100.0,
|
|
/// &mut b0, &mut b1, &mut b2, &mut b3,
|
|
/// &mut delay);
|
|
///
|
|
/// // ... do something with the result here.
|
|
/// }
|
|
///```
|
|
// Stilson/Moog implementation partly translated from here:
|
|
// https://github.com/ddiakopoulos/MoogLadders/blob/master/src/MusicDSPModel.h
|
|
// without any copyright as found on musicdsp.org
|
|
// (http://www.musicdsp.org/showone.php?id=24).
|
|
//
|
|
// It's also found on MusicDSP and has probably no proper license anyways.
|
|
// See also: https://github.com/ddiakopoulos/MoogLadders
|
|
// and https://github.com/rncbc/synthv1/blob/master/src/synthv1_filter.h#L103
|
|
// and https://github.com/ddiakopoulos/MoogLadders/blob/master/src/MusicDSPModel.h
|
|
#[inline]
|
|
pub fn process_stilson_moog(
|
|
input: f32, freq: f32, res: f32, israte: f32,
|
|
b0: &mut f32, b1: &mut f32, b2: &mut f32, b3: &mut f32,
|
|
delay: &mut [f32; 4],
|
|
) -> f32 {
|
|
|
|
let cutoff = 2.0 * freq * israte;
|
|
|
|
let p = cutoff * (1.8 - 0.8 * cutoff);
|
|
let k = 2.0 * (cutoff * std::f32::consts::PI * 0.5).sin() - 1.0;
|
|
|
|
let t1 = (1.0 - p) * 1.386249;
|
|
let t2 = 12.0 + t1 * t1;
|
|
|
|
let res = res * (t2 + 6.0 * t1) / (t2 - 6.0 * t1);
|
|
|
|
let x = input - res * *b3;
|
|
|
|
// Four cascaded one-pole filters (bilinear transform)
|
|
*b0 = x * p + delay[0] * p - k * *b0;
|
|
*b1 = *b0 * p + delay[1] * p - k * *b1;
|
|
*b2 = *b1 * p + delay[2] * p - k * *b2;
|
|
*b3 = *b2 * p + delay[3] * p - k * *b3;
|
|
|
|
// Clipping band-limited sigmoid
|
|
*b3 -= (*b3 * *b3 * *b3) * 0.166667;
|
|
|
|
delay[0] = x;
|
|
delay[1] = *b0;
|
|
delay[2] = *b1;
|
|
delay[3] = *b2;
|
|
|
|
*b3
|
|
}
|
|
|
|
// translated from Odin 2 Synthesizer Plugin
|
|
// Copyright (C) 2020 TheWaveWarden
|
|
// under GPLv3 or any later
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct DCBlockFilter<F: Flt> {
|
|
xm1: F,
|
|
ym1: F,
|
|
r: F,
|
|
}
|
|
|
|
impl<F: Flt> DCBlockFilter<F> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
xm1: f(0.0),
|
|
ym1: f(0.0),
|
|
r: f(0.995),
|
|
}
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.xm1 = f(0.0);
|
|
self.ym1 = f(0.0);
|
|
}
|
|
|
|
pub fn set_sample_rate(&mut self, srate: F) {
|
|
self.r = f(0.995);
|
|
if srate > f(90000.0) {
|
|
self.r = f(0.9965);
|
|
} else if srate > f(120000.0) {
|
|
self.r = f(0.997);
|
|
}
|
|
}
|
|
|
|
pub fn next(&mut self, input: F) -> F {
|
|
let y = input - self.xm1 + self.r * self.ym1;
|
|
self.xm1 = input;
|
|
self.ym1 = y;
|
|
y as F
|
|
}
|
|
}
|
|
|
|
// PolyBLEP by Tale
|
|
// (slightly modified)
|
|
// http://www.kvraudio.com/forum/viewtopic.php?t=375517
|
|
// from http://www.martin-finke.de/blog/articles/audio-plugins-018-polyblep-oscillator/
|
|
//
|
|
// default for `pw' should be 1.0, it's the pulse width
|
|
// for the square wave.
|
|
#[allow(dead_code)]
|
|
fn poly_blep_64(t: f64, dt: f64) -> f64 {
|
|
if t < dt {
|
|
let t = t / dt;
|
|
2. * t - (t * t) - 1.
|
|
|
|
} else if t > (1.0 - dt) {
|
|
let t = (t - 1.0) / dt;
|
|
(t * t) + 2. * t + 1.
|
|
|
|
} else {
|
|
0.
|
|
}
|
|
}
|
|
|
|
fn poly_blep(t: f32, dt: f32) -> f32 {
|
|
if t < dt {
|
|
let t = t / dt;
|
|
2. * t - (t * t) - 1.
|
|
|
|
} else if t > (1.0 - dt) {
|
|
let t = (t - 1.0) / dt;
|
|
(t * t) + 2. * t + 1.
|
|
|
|
} else {
|
|
0.
|
|
}
|
|
}
|
|
|
|
/// This is a band-limited oscillator based on the PolyBlep technique.
|
|
/// Here is a quick example on how to use it:
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::{PolyBlepOscillator, rand_01};
|
|
///
|
|
/// // Randomize the initial phase to make cancellation on summing less
|
|
/// // likely:
|
|
/// let mut osc =
|
|
/// PolyBlepOscillator::new(rand_01() * 0.25);
|
|
///
|
|
///
|
|
/// let freq = 440.0; // Hz
|
|
/// let israte = 1.0 / 44100.0; // Seconds per Sample
|
|
/// let pw = 0.2; // Pulse-Width for the next_pulse()
|
|
/// let waveform = 0; // 0 being pulse in this example, 1 being sawtooth
|
|
///
|
|
/// let mut block_of_samples = [0.0; 128];
|
|
/// // in your process function:
|
|
/// for output_sample in block_of_samples.iter_mut() {
|
|
/// *output_sample =
|
|
/// if waveform == 1 {
|
|
/// osc.next_saw(freq, israte)
|
|
/// } else {
|
|
/// osc.next_pulse(freq, israte, pw)
|
|
/// }
|
|
/// }
|
|
///```
|
|
#[derive(Debug, Clone)]
|
|
pub struct PolyBlepOscillator {
|
|
phase: f32,
|
|
init_phase: f32,
|
|
last_output: f32,
|
|
}
|
|
|
|
impl PolyBlepOscillator {
|
|
/// Create a new instance of [PolyBlepOscillator].
|
|
///
|
|
/// * `init_phase` - Initial phase of the oscillator.
|
|
/// Range of this parameter is from 0.0 to 1.0. Passing a random
|
|
/// value is advised for preventing phase cancellation when summing multiple
|
|
/// oscillators.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::{PolyBlepOscillator, rand_01};
|
|
///
|
|
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
|
|
///```
|
|
pub fn new(init_phase: f32) -> Self {
|
|
Self {
|
|
phase: 0.0,
|
|
last_output: 0.0,
|
|
init_phase,
|
|
}
|
|
}
|
|
|
|
/// Reset the internal state of the oscillator as if you just called
|
|
/// [PolyBlepOscillator::new].
|
|
#[inline]
|
|
pub fn reset(&mut self) {
|
|
self.phase = self.init_phase;
|
|
self.last_output = 0.0;
|
|
}
|
|
|
|
/// Creates the next sample of a sine wave.
|
|
///
|
|
/// * `freq` - The frequency in Hz.
|
|
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
|
|
///```
|
|
/// use hexodsp::dsp::helpers::{PolyBlepOscillator, rand_01};
|
|
///
|
|
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
|
|
///
|
|
/// let freq = 440.0; // Hz
|
|
/// let israte = 1.0 / 44100.0; // Seconds per Sample
|
|
///
|
|
/// // ...
|
|
/// let sample = osc.next_sin(freq, israte);
|
|
/// // ...
|
|
///```
|
|
#[inline]
|
|
pub fn next_sin(&mut self, freq: f32, israte: f32) -> f32 {
|
|
let phase_inc = freq * israte;
|
|
|
|
let s = fast_sin(self.phase * 2.0 * std::f32::consts::PI);
|
|
|
|
self.phase += phase_inc;
|
|
self.phase = self.phase.fract();
|
|
|
|
s as f32
|
|
}
|
|
|
|
/// Creates the next sample of a triangle wave. Please note that the
|
|
/// bandlimited waveform needs a few initial samples to swing in.
|
|
///
|
|
/// * `freq` - The frequency in Hz.
|
|
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
|
|
///```
|
|
/// use hexodsp::dsp::helpers::{PolyBlepOscillator, rand_01};
|
|
///
|
|
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
|
|
///
|
|
/// let freq = 440.0; // Hz
|
|
/// let israte = 1.0 / 44100.0; // Seconds per Sample
|
|
///
|
|
/// // ...
|
|
/// let sample = osc.next_tri(freq, israte);
|
|
/// // ...
|
|
///```
|
|
#[inline]
|
|
pub fn next_tri(&mut self, freq: f32, israte: f32) -> f32 {
|
|
let phase_inc = freq * israte;
|
|
|
|
let mut s =
|
|
if self.phase < 0.5 { 1.0 }
|
|
else { -1.0 };
|
|
|
|
s += poly_blep(self.phase, phase_inc);
|
|
s -= poly_blep((self.phase + 0.5).fract(), phase_inc);
|
|
|
|
// leaky integrator: y[n] = A * x[n] + (1 - A) * y[n-1]
|
|
s = phase_inc * s + (1.0 - phase_inc) * self.last_output;
|
|
self.last_output = s;
|
|
|
|
self.phase += phase_inc;
|
|
self.phase = self.phase.fract();
|
|
|
|
// the signal is a bit too weak, we need to amplify it
|
|
// or else the volume diff between the different waveforms
|
|
// is too big:
|
|
s * 4.0
|
|
}
|
|
|
|
/// Creates the next sample of a sawtooth wave.
|
|
///
|
|
/// * `freq` - The frequency in Hz.
|
|
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
|
|
///```
|
|
/// use hexodsp::dsp::helpers::{PolyBlepOscillator, rand_01};
|
|
///
|
|
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
|
|
///
|
|
/// let freq = 440.0; // Hz
|
|
/// let israte = 1.0 / 44100.0; // Seconds per Sample
|
|
///
|
|
/// // ...
|
|
/// let sample = osc.next_saw(freq, israte);
|
|
/// // ...
|
|
///```
|
|
#[inline]
|
|
pub fn next_saw(&mut self, freq: f32, israte: f32) -> f32 {
|
|
let phase_inc = freq * israte;
|
|
|
|
let mut s = (2.0 * self.phase) - 1.0;
|
|
s -= poly_blep(self.phase, phase_inc);
|
|
|
|
self.phase += phase_inc;
|
|
self.phase = self.phase.fract();
|
|
|
|
s
|
|
}
|
|
|
|
/// Creates the next sample of a pulse wave.
|
|
/// In comparison to [PolyBlepOscillator::next_pulse_no_dc] this
|
|
/// version is DC compensated, so that you may add multiple different
|
|
/// pulse oscillators for a unison effect without too big DC issues.
|
|
///
|
|
/// * `freq` - The frequency in Hz.
|
|
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
|
|
/// * `pw` - The pulse width. Use the value 0.0 for a square wave.
|
|
///```
|
|
/// use hexodsp::dsp::helpers::{PolyBlepOscillator, rand_01};
|
|
///
|
|
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
|
|
///
|
|
/// let freq = 440.0; // Hz
|
|
/// let israte = 1.0 / 44100.0; // Seconds per Sample
|
|
/// let pw = 0.0; // 0.0 is a square wave.
|
|
///
|
|
/// // ...
|
|
/// let sample = osc.next_pulse(freq, israte, pw);
|
|
/// // ...
|
|
///```
|
|
#[inline]
|
|
pub fn next_pulse(&mut self, freq: f32, israte: f32, pw: f32) -> f32 {
|
|
let phase_inc = freq * israte;
|
|
|
|
let pw = (0.1 * pw) + ((1.0 - pw) * 0.5); // some scaling
|
|
let dc_compensation = (0.5 - pw) * 2.0;
|
|
|
|
let mut s =
|
|
if self.phase < pw { 1.0 }
|
|
else { -1.0 };
|
|
|
|
s += poly_blep(self.phase, phase_inc);
|
|
s -= poly_blep((self.phase + (1.0 - pw)).fract(),
|
|
phase_inc);
|
|
|
|
s += dc_compensation;
|
|
|
|
self.phase += phase_inc;
|
|
self.phase = self.phase.fract();
|
|
|
|
s
|
|
}
|
|
|
|
/// Creates the next sample of a pulse wave.
|
|
/// In comparison to [PolyBlepOscillator::next_pulse] this
|
|
/// version is not DC compensated. So be careful when adding multiple
|
|
/// of this or generally using it in an audio context.
|
|
///
|
|
/// * `freq` - The frequency in Hz.
|
|
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
|
|
/// * `pw` - The pulse width. Use the value 0.0 for a square wave.
|
|
///```
|
|
/// use hexodsp::dsp::helpers::{PolyBlepOscillator, rand_01};
|
|
///
|
|
/// let mut osc = PolyBlepOscillator::new(rand_01() * 0.25);
|
|
///
|
|
/// let freq = 440.0; // Hz
|
|
/// let israte = 1.0 / 44100.0; // Seconds per Sample
|
|
/// let pw = 0.0; // 0.0 is a square wave.
|
|
///
|
|
/// // ...
|
|
/// let sample = osc.next_pulse_no_dc(freq, israte, pw);
|
|
/// // ...
|
|
///```
|
|
#[inline]
|
|
pub fn next_pulse_no_dc(&mut self, freq: f32, israte: f32, pw: f32) -> f32 {
|
|
let phase_inc = freq * israte;
|
|
|
|
let pw = (0.1 * pw) + ((1.0 - pw) * 0.5); // some scaling
|
|
|
|
let mut s =
|
|
if self.phase < pw { 1.0 }
|
|
else { -1.0 };
|
|
|
|
s += poly_blep(self.phase, phase_inc);
|
|
s -= poly_blep((self.phase + (1.0 - pw)).fract(),
|
|
phase_inc);
|
|
|
|
self.phase += phase_inc;
|
|
self.phase = self.phase.fract();
|
|
|
|
s
|
|
}
|
|
}
|
|
|
|
// This oscillator is based on the work "VECTOR PHASESHAPING SYNTHESIS"
|
|
// by: Jari Kleimola*, Victor Lazzarini†, Joseph Timoney†, Vesa Välimäki*
|
|
// *Aalto University School of Electrical Engineering Espoo, Finland;
|
|
// †National University of Ireland, Maynooth Ireland
|
|
//
|
|
// See also this PDF: http://recherche.ircam.fr/pub/dafx11/Papers/55_e.pdf
|
|
/// Vector Phase Shaping Oscillator.
|
|
/// The parameters `d` and `v` control the shape of the sinus
|
|
/// wave. This leads to interesting modulation properties of those
|
|
/// control values.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::{VPSOscillator, rand_01};
|
|
///
|
|
/// // Randomize the initial phase to make cancellation on summing less
|
|
/// // likely:
|
|
/// let mut osc =
|
|
/// VPSOscillator::new(rand_01() * 0.25);
|
|
///
|
|
///
|
|
/// let freq = 440.0; // Hz
|
|
/// let israte = 1.0 / 44100.0; // Seconds per Sample
|
|
/// let d = 0.5; // Range: 0.0 to 1.0
|
|
/// let v = 0.75; // Range: 0.0 to 1.0
|
|
///
|
|
/// let mut block_of_samples = [0.0; 128];
|
|
/// // in your process function:
|
|
/// for output_sample in block_of_samples.iter_mut() {
|
|
/// // It is advised to limit the `v` value, because with certain
|
|
/// // `d` values the combination creates just a DC offset.
|
|
/// let v = VPSOscillator::limit_v(d, v);
|
|
/// *output_sample = osc.next(freq, israte, d, v);
|
|
/// }
|
|
///```
|
|
///
|
|
/// It can be beneficial to apply distortion and oversampling.
|
|
/// Especially oversampling can be important for some `d` and `v`
|
|
/// combinations, even without distortion.
|
|
///
|
|
///```
|
|
/// use hexodsp::dsp::helpers::{VPSOscillator, rand_01, apply_distortion};
|
|
/// use hexodsp::dsp::biquad::Oversampling;
|
|
///
|
|
/// let mut osc = VPSOscillator::new(rand_01() * 0.25);
|
|
/// let mut ovr : Oversampling<4> = Oversampling::new();
|
|
///
|
|
/// let freq = 440.0; // Hz
|
|
/// let israte = 1.0 / 44100.0; // Seconds per Sample
|
|
/// let d = 0.5; // Range: 0.0 to 1.0
|
|
/// let v = 0.75; // Range: 0.0 to 1.0
|
|
///
|
|
/// let mut block_of_samples = [0.0; 128];
|
|
/// // in your process function:
|
|
/// for output_sample in block_of_samples.iter_mut() {
|
|
/// // It is advised to limit the `v` value, because with certain
|
|
/// // `d` values the combination creates just a DC offset.
|
|
/// let v = VPSOscillator::limit_v(d, v);
|
|
///
|
|
/// let overbuf = ovr.resample_buffer();
|
|
/// for b in overbuf {
|
|
/// *b = apply_distortion(osc.next(freq, israte, d, v), 0.9, 1);
|
|
/// }
|
|
/// *output_sample = ovr.downsample();
|
|
/// }
|
|
///```
|
|
#[derive(Debug, Clone)]
|
|
pub struct VPSOscillator {
|
|
phase: f32,
|
|
init_phase: f32,
|
|
}
|
|
|
|
impl VPSOscillator {
|
|
/// Create a new instance of [VPSOscillator].
|
|
///
|
|
/// * `init_phase` - The initial phase of the oscillator.
|
|
pub fn new(init_phase: f32) -> Self {
|
|
Self {
|
|
phase: 0.0,
|
|
init_phase,
|
|
}
|
|
}
|
|
|
|
/// Reset the phase of the oscillator to the initial phase.
|
|
#[inline]
|
|
pub fn reset(&mut self) {
|
|
self.phase = self.init_phase;
|
|
}
|
|
|
|
#[inline]
|
|
fn s(p: f32) -> f32 {
|
|
-(std::f32::consts::TAU * p).cos()
|
|
}
|
|
|
|
#[inline]
|
|
fn phi_vps(x: f32, v: f32, d: f32) -> f32 {
|
|
if x < d {
|
|
(v * x) / d
|
|
} else {
|
|
v + ((1.0 - v) * (x - d))/(1.0 - d)
|
|
}
|
|
}
|
|
|
|
/// This rather complicated function blends out some
|
|
/// combinations of 'd' and 'v' that just lead to a constant DC
|
|
/// offset. Which is not very useful in an audio oscillator
|
|
/// context.
|
|
///
|
|
/// Call this before passing `v` to [VPSOscillator::next].
|
|
#[inline]
|
|
pub fn limit_v(d: f32, v: f32) -> f32 {
|
|
let delta = 0.5 - (d - 0.5).abs();
|
|
if delta < 0.05 {
|
|
let x = (0.05 - delta) * 19.99;
|
|
if d < 0.5 {
|
|
let mm = x * 0.5;
|
|
let max = 1.0 - mm;
|
|
if v > max && v < 1.0 {
|
|
max
|
|
} else if v >= 1.0 && v < (1.0 + mm) {
|
|
1.0 + mm
|
|
} else {
|
|
v
|
|
}
|
|
} else {
|
|
if v < 1.0 {
|
|
v.clamp(x * 0.5, 1.0)
|
|
} else {
|
|
v
|
|
}
|
|
}
|
|
} else {
|
|
v
|
|
}
|
|
}
|
|
|
|
/// Creates the next sample of this oscillator.
|
|
///
|
|
/// * `freq` - The frequency in Hz.
|
|
/// * `israte` - The inverse sampling rate, or seconds per sample as in eg. `1.0 / 44100.0`.
|
|
/// * `d` - The phase distortion parameter `d` which must be in the range `0.0` to `1.0`.
|
|
/// * `v` - The phase distortion parameter `v` which must be in the range `0.0` to `1.0`.
|
|
///
|
|
/// It is advised to limit the `v` using the [VPSOscillator::limit_v] function
|
|
/// before calling this function. To prevent DC offsets when modulating the parameters.
|
|
pub fn next(&mut self, freq: f32, israte: f32, d: f32, v: f32) -> f32 {
|
|
let s = Self::s(Self::phi_vps(self.phase, v, d));
|
|
|
|
self.phase += freq * israte;
|
|
self.phase = self.phase.fract();
|
|
|
|
s
|
|
}
|
|
}
|
|
|
|
// Adapted from https://github.com/ValleyAudio/ValleyRackFree/blob/v1.0/src/Common/DSP/LFO.hpp
|
|
//
|
|
// ValleyRackFree Copyright (C) 2020, Valley Audio Soft, Dale Johnson
|
|
// Adapted under the GPL-3.0-or-later License.
|
|
/// An LFO with a variable reverse point, which can go from reverse Saw, to Tri
|
|
/// and to Saw, depending on the reverse point.
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct TriSawLFO<F: Flt> {
|
|
/// The (inverse) sample rate. Eg. 1.0 / 44100.0.
|
|
israte: F,
|
|
/// The current oscillator phase.
|
|
phase: F,
|
|
/// The point from where the falling edge will be used.
|
|
rev: F,
|
|
/// Whether the LFO is currently rising
|
|
rising: bool,
|
|
/// The frequency.
|
|
freq: F,
|
|
/// Precomputed rise/fall rate of the LFO.
|
|
rise_r: F,
|
|
fall_r: F,
|
|
/// Initial phase offset.
|
|
init_phase: F,
|
|
}
|
|
|
|
impl<F: Flt> TriSawLFO<F> {
|
|
pub fn new() -> Self {
|
|
let mut this = Self {
|
|
israte: f(1.0 / 44100.0),
|
|
phase: f(0.0),
|
|
rev: f(0.5),
|
|
rising: true,
|
|
freq: f(1.0),
|
|
fall_r: f(0.0),
|
|
rise_r: f(0.0),
|
|
init_phase: f(0.0),
|
|
};
|
|
this.recalc();
|
|
this
|
|
}
|
|
|
|
pub fn set_phase_offs(&mut self, phase: F) {
|
|
self.init_phase = phase;
|
|
self.phase = phase;
|
|
}
|
|
|
|
#[inline]
|
|
fn recalc(&mut self) {
|
|
self.rev = fclampc(self.rev, 0.0001, 0.999);
|
|
self.rise_r = f::<F>( 1.0) / self.rev;
|
|
self.fall_r = f::<F>(-1.0) / (f::<F>(1.0) - self.rev);
|
|
}
|
|
|
|
pub fn set_sample_rate(&mut self, srate: F) {
|
|
self.israte = f::<F>(1.0) / (srate as F);
|
|
self.recalc();
|
|
}
|
|
|
|
pub fn reset(&mut self) {
|
|
self.phase = self.init_phase;
|
|
self.rev = f(0.5);
|
|
self.rising = true;
|
|
}
|
|
|
|
#[inline]
|
|
pub fn set(&mut self, freq: F, rev: F) {
|
|
self.freq = freq as F;
|
|
self.rev = rev as F;
|
|
self.recalc();
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next_unipolar(&mut self) -> F {
|
|
if self.phase >= f(1.0) {
|
|
self.phase = self.phase - f(1.0);
|
|
self.rising = true;
|
|
}
|
|
|
|
if self.phase >= self.rev {
|
|
self.rising = false;
|
|
}
|
|
|
|
let s =
|
|
if self.rising {
|
|
self.phase * self.rise_r
|
|
} else {
|
|
self.phase * self.fall_r - self.fall_r
|
|
};
|
|
|
|
self.phase = self.phase + self.freq * self.israte;
|
|
|
|
s
|
|
}
|
|
|
|
#[inline]
|
|
pub fn next_bipolar(&mut self) -> F {
|
|
(self.next_unipolar() * f(2.0)) - f(1.0)
|
|
}
|
|
}
|
|
|
|
#[macro_export]
|
|
macro_rules! fa_distort { ($formatter: expr, $v: expr, $denorm_v: expr) => { {
|
|
let s =
|
|
match ($v.round() as usize) {
|
|
0 => "Off",
|
|
1 => "TanH",
|
|
2 => "B.D.Jong",
|
|
3 => "Fold",
|
|
_ => "?",
|
|
};
|
|
write!($formatter, "{}", s)
|
|
} } }
|
|
|
|
#[inline]
|
|
pub fn apply_distortion(s: f32, damt: f32, dist_type: u8) -> f32 {
|
|
match dist_type {
|
|
1 => (damt.clamp(0.01, 1.0) * 100.0 * s).tanh(),
|
|
2 => f_distort(1.0, damt * damt * damt * 1000.0, s),
|
|
3 => {
|
|
let damt = damt.clamp(0.0, 0.99);
|
|
let damt = 1.0 - damt * damt;
|
|
f_fold_distort(1.0, damt, s) * (1.0 / damt)
|
|
},
|
|
_ => s,
|
|
}
|
|
}
|
|
|
|
//pub struct UnisonBlep {
|
|
// oscs: Vec<PolyBlepOscillator>,
|
|
//// dc_block: crate::filter::DCBlockFilter,
|
|
//}
|
|
//
|
|
//impl UnisonBlep {
|
|
// pub fn new(max_unison: usize) -> Self {
|
|
// let mut oscs = vec![];
|
|
// let mut rng = RandGen::new();
|
|
//
|
|
// let dis_init_phase = 0.05;
|
|
// for i in 0..(max_unison + 1) {
|
|
// // randomize phases so we fatten the unison, get
|
|
// // less DC and not an amplified signal until the
|
|
// // detune desyncs the waves.
|
|
// // But no random phase for first, so we reduce the click
|
|
// let init_phase =
|
|
// if i == 0 { 0.0 } else { rng.next_open01() };
|
|
// oscs.push(PolyBlepOscillator::new(init_phase));
|
|
// }
|
|
//
|
|
// Self {
|
|
// oscs,
|
|
//// dc_block: crate::filter::DCBlockFilter::new(),
|
|
// }
|
|
// }
|
|
//
|
|
// pub fn set_sample_rate(&mut self, srate: f32) {
|
|
//// self.dc_block.set_sample_rate(srate);
|
|
// for o in self.oscs.iter_mut() {
|
|
// o.set_sample_rate(srate);
|
|
// }
|
|
// }
|
|
//
|
|
// pub fn reset(&mut self) {
|
|
//// self.dc_block.reset();
|
|
// for o in self.oscs.iter_mut() {
|
|
// o.reset();
|
|
// }
|
|
// }
|
|
//
|
|
// pub fn next<P: OscillatorInputParams>(&mut self, params: &P) -> f32 {
|
|
// let unison =
|
|
// (params.unison().floor() as usize)
|
|
// .min(self.oscs.len() - 1);
|
|
// let detune = params.detune() as f64;
|
|
//
|
|
// let mix = (1.0 / ((unison + 1) as f32)).sqrt();
|
|
//
|
|
// let mut s = mix * self.oscs[0].next(params, 0.0);
|
|
//
|
|
// for u in 0..unison {
|
|
// let detune_factor =
|
|
// detune * (((u / 2) + 1) as f64
|
|
// * if (u % 2) == 0 { 1.0 } else { -1.0 });
|
|
// s += mix * self.oscs[u + 1].next(params, detune_factor * 0.01);
|
|
// }
|
|
//
|
|
//// self.dc_block.next(s)
|
|
// s
|
|
// }
|
|
//}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn check_range2p_exp() {
|
|
let a = p2range_exp(0.5, 1.0, 100.0);
|
|
let x = range2p_exp(a, 1.0, 100.0);
|
|
|
|
assert!((x - 0.5).abs() < std::f32::EPSILON);
|
|
}
|
|
|
|
#[test]
|
|
fn check_range2p() {
|
|
let a = p2range(0.5, 1.0, 100.0);
|
|
let x = range2p(a, 1.0, 100.0);
|
|
|
|
assert!((x - 0.5).abs() < std::f32::EPSILON);
|
|
}
|
|
}
|