HexoDSP/src/dsp/dattorro.rs
Weird Constructor c5c26bdc3e Applied rustfmt
2022-07-17 11:58:28 +02:00

444 lines
17 KiB
Rust

// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of HexoDSP. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
// This file contains a reverb implementation that is based
// on Jon Dattorro's 1997 reverb algorithm. It's also largely
// based on the C++ implementation from ValleyAudio / ValleyRackFree
//
// ValleyRackFree Copyright (C) 2020, Valley Audio Soft, Dale Johnson
// Adapted under the GPL-3.0-or-later License.
//
// See also: https://github.com/ValleyAudio/ValleyRackFree/blob/v1.0/src/Plateau/Dattorro.cpp
// and: https://github.com/ValleyAudio/ValleyRackFree/blob/v1.0/src/Plateau/Dattorro.hpp
//
// And: https://ccrma.stanford.edu/~dattorro/music.html
// And: https://ccrma.stanford.edu/~dattorro/EffectDesignPart1.pdf
use crate::dsp::helpers::crossfade;
const DAT_SAMPLE_RATE: f64 = 29761.0;
const DAT_SAMPLES_PER_MS: f64 = DAT_SAMPLE_RATE / 1000.0;
const DAT_INPUT_APF_TIMES_MS: [f64; 4] = [
141.0 / DAT_SAMPLES_PER_MS,
107.0 / DAT_SAMPLES_PER_MS,
379.0 / DAT_SAMPLES_PER_MS,
277.0 / DAT_SAMPLES_PER_MS,
];
const DAT_LEFT_APF1_TIME_MS: f64 = 672.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_APF2_TIME_MS: f64 = 1800.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_APF1_TIME_MS: f64 = 908.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_APF2_TIME_MS: f64 = 2656.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_DELAY1_TIME_MS: f64 = 4453.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_DELAY2_TIME_MS: f64 = 3720.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_DELAY1_TIME_MS: f64 = 4217.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_DELAY2_TIME_MS: f64 = 3163.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_TAPS_TIME_MS: [f64; 7] = [
266.0 / DAT_SAMPLES_PER_MS,
2974.0 / DAT_SAMPLES_PER_MS,
1913.0 / DAT_SAMPLES_PER_MS,
1996.0 / DAT_SAMPLES_PER_MS,
1990.0 / DAT_SAMPLES_PER_MS,
187.0 / DAT_SAMPLES_PER_MS,
1066.0 / DAT_SAMPLES_PER_MS,
];
const DAT_RIGHT_TAPS_TIME_MS: [f64; 7] = [
353.0 / DAT_SAMPLES_PER_MS,
3627.0 / DAT_SAMPLES_PER_MS,
1228.0 / DAT_SAMPLES_PER_MS,
2673.0 / DAT_SAMPLES_PER_MS,
2111.0 / DAT_SAMPLES_PER_MS,
335.0 / DAT_SAMPLES_PER_MS,
121.0 / DAT_SAMPLES_PER_MS,
];
const DAT_LFO_FREQS_HZ: [f64; 4] = [0.1, 0.15, 0.12, 0.18];
const DAT_INPUT_DIFFUSION1: f64 = 0.75;
const DAT_INPUT_DIFFUSION2: f64 = 0.625;
const DAT_PLATE_DIFFUSION1: f64 = 0.7;
const DAT_PLATE_DIFFUSION2: f64 = 0.5;
const DAT_LFO_EXCURSION_MS: f64 = 16.0 / DAT_SAMPLES_PER_MS;
const DAT_LFO_EXCURSION_MOD_MAX: f64 = 16.0;
use crate::dsp::helpers::{AllPass, DCBlockFilter, DelayBuffer, OnePoleHPF, OnePoleLPF, TriSawLFO};
#[derive(Debug, Clone)]
pub struct DattorroReverb {
last_scale: f64,
inp_dc_block: [DCBlockFilter<f64>; 2],
out_dc_block: [DCBlockFilter<f64>; 2],
lfos: [TriSawLFO<f64>; 4],
input_hpf: OnePoleHPF<f64>,
input_lpf: OnePoleLPF<f64>,
pre_delay: DelayBuffer<f64>,
input_apfs: [(AllPass<f64>, f64, f64); 4],
apf1: [(AllPass<f64>, f64, f64); 2],
hpf: [OnePoleHPF<f64>; 2],
lpf: [OnePoleLPF<f64>; 2],
apf2: [(AllPass<f64>, f64, f64); 2],
delay1: [(DelayBuffer<f64>, f64); 2],
delay2: [(DelayBuffer<f64>, f64); 2],
left_sum: f64,
right_sum: f64,
dbg_count: usize,
}
pub trait DattorroReverbParams {
/// Time for the pre-delay of the reverb. Any sensible `ms` that fits
/// into a delay buffer of 5 seconds.
fn pre_delay_time_ms(&self) -> f64;
/// The size of the reverb, values go from 0.0 to 1.0.
fn time_scale(&self) -> f64;
/// High-pass input filter cutoff freq in Hz, range: 0.0 to 22000.0
fn input_high_cutoff_hz(&self) -> f64;
/// Low-pass input filter cutoff freq in Hz, range: 0.0 to 22000.0
fn input_low_cutoff_hz(&self) -> f64;
/// High-pass reverb filter cutoff freq in Hz, range: 0.0 to 22000.0
fn reverb_high_cutoff_hz(&self) -> f64;
/// Low-pass reverb filter cutoff freq in Hz, range: 0.0 to 22000.0
fn reverb_low_cutoff_hz(&self) -> f64;
/// Modulation speed factor, range: 0.0 to 1.0
fn mod_speed(&self) -> f64;
/// Modulation depth from the LFOs, range: 0.0 to 1.0
fn mod_depth(&self) -> f64;
/// Modulation shape (from saw to tri to saw), range: 0.0 to 1.0
fn mod_shape(&self) -> f64;
/// The mix between output from the pre-delay and the input diffusion.
/// range: 0.0 to 1.0. Default should be 1.0
fn input_diffusion_mix(&self) -> f64;
/// The amount of plate diffusion going on, range: 0.0 to 1.0
fn diffusion(&self) -> f64;
/// Internal tank decay time, range: 0.0 to 1.0
fn decay(&self) -> f64;
}
impl DattorroReverb {
pub fn new() -> Self {
let mut this = Self {
last_scale: 1.0,
inp_dc_block: [DCBlockFilter::new(); 2],
out_dc_block: [DCBlockFilter::new(); 2],
lfos: [TriSawLFO::new(); 4],
input_hpf: OnePoleHPF::new(),
input_lpf: OnePoleLPF::new(),
pre_delay: DelayBuffer::new(),
input_apfs: Default::default(),
apf1: Default::default(),
hpf: [OnePoleHPF::new(); 2],
lpf: [OnePoleLPF::new(); 2],
apf2: Default::default(),
delay1: Default::default(),
delay2: Default::default(),
left_sum: 0.0,
right_sum: 0.0,
dbg_count: 0,
};
this.reset();
this
}
pub fn reset(&mut self) {
self.input_lpf.reset();
self.input_hpf.reset();
self.input_lpf.set_freq(22000.0);
self.input_hpf.set_freq(0.0);
self.input_apfs[0] = (AllPass::new(), DAT_INPUT_APF_TIMES_MS[0], DAT_INPUT_DIFFUSION1);
self.input_apfs[1] = (AllPass::new(), DAT_INPUT_APF_TIMES_MS[1], DAT_INPUT_DIFFUSION1);
self.input_apfs[2] = (AllPass::new(), DAT_INPUT_APF_TIMES_MS[2], DAT_INPUT_DIFFUSION2);
self.input_apfs[3] = (AllPass::new(), DAT_INPUT_APF_TIMES_MS[3], DAT_INPUT_DIFFUSION2);
self.apf1[0] = (AllPass::new(), DAT_LEFT_APF1_TIME_MS, -DAT_PLATE_DIFFUSION1);
self.apf1[1] = (AllPass::new(), DAT_RIGHT_APF1_TIME_MS, -DAT_PLATE_DIFFUSION1);
self.apf2[0] = (AllPass::new(), DAT_LEFT_APF2_TIME_MS, -DAT_PLATE_DIFFUSION2);
self.apf2[1] = (AllPass::new(), DAT_RIGHT_APF2_TIME_MS, -DAT_PLATE_DIFFUSION2);
self.delay1[0] = (DelayBuffer::new(), DAT_LEFT_DELAY1_TIME_MS);
self.delay1[1] = (DelayBuffer::new(), DAT_RIGHT_DELAY1_TIME_MS);
self.delay2[0] = (DelayBuffer::new(), DAT_LEFT_DELAY2_TIME_MS);
self.delay2[1] = (DelayBuffer::new(), DAT_RIGHT_DELAY2_TIME_MS);
self.lpf[0].reset();
self.lpf[1].reset();
self.lpf[0].set_freq(10000.0);
self.lpf[1].set_freq(10000.0);
self.hpf[0].reset();
self.hpf[1].reset();
self.hpf[0].set_freq(0.0);
self.hpf[1].set_freq(0.0);
self.lfos[0].set(DAT_LFO_FREQS_HZ[0], 0.5);
self.lfos[0].set_phase_offs(0.0);
self.lfos[0].reset();
self.lfos[1].set(DAT_LFO_FREQS_HZ[1], 0.5);
self.lfos[1].set_phase_offs(0.25);
self.lfos[1].reset();
self.lfos[2].set(DAT_LFO_FREQS_HZ[2], 0.5);
self.lfos[2].set_phase_offs(0.5);
self.lfos[2].reset();
self.lfos[3].set(DAT_LFO_FREQS_HZ[3], 0.5);
self.lfos[3].set_phase_offs(0.75);
self.lfos[3].reset();
self.inp_dc_block[0].reset();
self.inp_dc_block[1].reset();
self.out_dc_block[0].reset();
self.out_dc_block[1].reset();
self.pre_delay.reset();
self.left_sum = 0.0;
self.right_sum = 0.0;
self.set_time_scale(1.0);
}
#[inline]
pub fn set_time_scale(&mut self, scale: f64) {
if (self.last_scale - scale).abs() > std::f64::EPSILON {
let scale = scale.max(0.1);
self.last_scale = scale;
self.apf1[0].1 = DAT_LEFT_APF1_TIME_MS * scale;
self.apf1[1].1 = DAT_RIGHT_APF1_TIME_MS * scale;
self.apf2[0].1 = DAT_LEFT_APF2_TIME_MS * scale;
self.apf2[1].1 = DAT_RIGHT_APF2_TIME_MS * scale;
self.delay1[0].1 = DAT_LEFT_DELAY1_TIME_MS * scale;
self.delay1[1].1 = DAT_RIGHT_DELAY1_TIME_MS * scale;
self.delay2[0].1 = DAT_LEFT_DELAY2_TIME_MS * scale;
self.delay2[1].1 = DAT_RIGHT_DELAY2_TIME_MS * scale;
}
}
pub fn set_sample_rate(&mut self, srate: f64) {
self.inp_dc_block[0].set_sample_rate(srate);
self.inp_dc_block[1].set_sample_rate(srate);
self.out_dc_block[0].set_sample_rate(srate);
self.out_dc_block[1].set_sample_rate(srate);
self.lfos[0].set_sample_rate(srate);
self.lfos[1].set_sample_rate(srate);
self.lfos[2].set_sample_rate(srate);
self.lfos[3].set_sample_rate(srate);
self.input_hpf.set_sample_rate(srate);
self.input_lpf.set_sample_rate(srate);
self.pre_delay.set_sample_rate(srate);
self.input_apfs[0].0.set_sample_rate(srate);
self.input_apfs[1].0.set_sample_rate(srate);
self.input_apfs[2].0.set_sample_rate(srate);
self.input_apfs[3].0.set_sample_rate(srate);
self.apf1[0].0.set_sample_rate(srate);
self.apf1[1].0.set_sample_rate(srate);
self.apf2[0].0.set_sample_rate(srate);
self.apf2[1].0.set_sample_rate(srate);
self.hpf[0].set_sample_rate(srate);
self.hpf[1].set_sample_rate(srate);
self.lpf[0].set_sample_rate(srate);
self.lpf[1].set_sample_rate(srate);
self.delay1[0].0.set_sample_rate(srate);
self.delay1[1].0.set_sample_rate(srate);
self.delay2[0].0.set_sample_rate(srate);
self.delay2[1].0.set_sample_rate(srate);
}
#[inline]
fn calc_apf_delay_times(
&mut self,
params: &mut dyn DattorroReverbParams,
) -> (f64, f64, f64, f64) {
let left_apf1_delay_ms = self.apf1[0].1
+ (self.lfos[0].next_bipolar() as f64
* DAT_LFO_EXCURSION_MS
* DAT_LFO_EXCURSION_MOD_MAX
* params.mod_depth());
let right_apf1_delay_ms = self.apf1[1].1
+ (self.lfos[1].next_bipolar() as f64
* DAT_LFO_EXCURSION_MS
* DAT_LFO_EXCURSION_MOD_MAX
* params.mod_depth());
let left_apf2_delay_ms = self.apf2[0].1
+ (self.lfos[2].next_bipolar() as f64
* DAT_LFO_EXCURSION_MS
* DAT_LFO_EXCURSION_MOD_MAX
* params.mod_depth());
let right_apf2_delay_ms = self.apf2[1].1
+ (self.lfos[3].next_bipolar() as f64
* DAT_LFO_EXCURSION_MS
* DAT_LFO_EXCURSION_MOD_MAX
* params.mod_depth());
(left_apf1_delay_ms, right_apf1_delay_ms, left_apf2_delay_ms, right_apf2_delay_ms)
}
pub fn process(
&mut self,
params: &mut dyn DattorroReverbParams,
input_l: f64,
input_r: f64,
) -> (f64, f64) {
// Some parameter setup...
let timescale = 0.1 + (4.0 - 0.1) * params.time_scale();
self.set_time_scale(timescale);
self.hpf[0].set_freq(params.reverb_high_cutoff_hz());
self.hpf[1].set_freq(params.reverb_high_cutoff_hz());
self.lpf[0].set_freq(params.reverb_low_cutoff_hz());
self.lpf[1].set_freq(params.reverb_low_cutoff_hz());
let mod_speed = params.mod_speed();
let mod_speed = mod_speed * mod_speed;
let mod_speed = mod_speed * 99.0 + 1.0;
self.lfos[0].set(DAT_LFO_FREQS_HZ[0] * mod_speed, params.mod_shape());
self.lfos[1].set(DAT_LFO_FREQS_HZ[1] * mod_speed, params.mod_shape());
self.lfos[2].set(DAT_LFO_FREQS_HZ[2] * mod_speed, params.mod_shape());
self.lfos[3].set(DAT_LFO_FREQS_HZ[3] * mod_speed, params.mod_shape());
self.apf1[0].2 = -DAT_PLATE_DIFFUSION1 * params.diffusion();
self.apf1[1].2 = -DAT_PLATE_DIFFUSION1 * params.diffusion();
self.apf2[0].2 = DAT_PLATE_DIFFUSION2 * params.diffusion();
self.apf2[1].2 = DAT_PLATE_DIFFUSION2 * params.diffusion();
let (left_apf1_delay_ms, right_apf1_delay_ms, left_apf2_delay_ms, right_apf2_delay_ms) =
self.calc_apf_delay_times(params);
// Parameter setup done!
// Input into their corresponding DC blockers
let input_r = self.inp_dc_block[0].next(input_r);
let input_l = self.inp_dc_block[1].next(input_l);
// Sum of DC outputs => LPF => HPF
self.input_lpf.set_freq(params.input_low_cutoff_hz());
self.input_hpf.set_freq(params.input_high_cutoff_hz());
let out_lpf = self.input_lpf.process(input_r + input_l);
let out_hpf = self.input_hpf.process(out_lpf);
// HPF => Pre-Delay
let out_pre_delay = if params.pre_delay_time_ms() < 0.1 {
out_hpf
} else {
self.pre_delay.next_cubic(params.pre_delay_time_ms(), out_hpf)
};
// Pre-Delay => 4 All-Pass filters
let mut diffused = out_pre_delay;
for (apf, time, g) in &mut self.input_apfs {
diffused = apf.next(*time, *g, diffused);
}
// Mix between diffused and pre-delayed intput for further processing
let tank_feed = crossfade(out_pre_delay, diffused, params.input_diffusion_mix());
// First tap for the output
self.left_sum += tank_feed;
self.right_sum += tank_feed;
// Calculate tank decay of the left/right signal channels.
let decay = 1.0 - params.decay().clamp(0.1, 0.9999);
let decay = 1.0 - (decay * decay);
// Left Sum => APF1 => Delay1 => LPF => HPF => APF2 => Delay2
// And then send this over to the right sum.
let left = self.left_sum;
let left = self.apf1[0].0.next(left_apf1_delay_ms, self.apf1[0].2, left);
let left_apf_tap = left;
let left = self.delay1[0].0.next_cubic(self.delay1[0].1, left);
let left = self.lpf[0].process(left);
let left = self.hpf[0].process(left);
let left = left * decay;
let left = self.apf2[0].0.next(left_apf2_delay_ms, self.apf2[0].2, left);
let left = self.delay2[0].0.next_cubic(self.delay2[0].1, left);
// if self.dbg_count % 48 == 0 {
// println!("APFS dcy={:8.6}; {:8.6} {:8.6} {:8.6} {:8.6} | {:8.6} {:8.6} {:8.6} {:8.6}",
// decay,
// self.apf1[0].2,
// self.apf1[1].2,
// self.apf2[0].2,
// self.apf2[1].2,
// left_apf1_delay_ms, right_apf1_delay_ms,
// left_apf2_delay_ms, right_apf2_delay_ms);
// println!("DELY1/2 {:8.6} / {:8.6} | {:8.6} / {:8.6}",
// self.delay1[0].1,
// self.delay2[0].1,
// self.delay1[1].1,
// self.delay2[1].1);
// }
// Right Sum => APF1 => Delay1 => LPF => HPF => APF2 => Delay2
// And then send this over to the left sum.
let right = self.right_sum;
let right = self.apf1[1].0.next(right_apf1_delay_ms, self.apf1[1].2, right);
let right_apf_tap = right;
let right = self.delay1[1].0.next_cubic(self.delay1[1].1, right);
let right = self.lpf[1].process(right);
let right = self.hpf[1].process(right);
let right = right * decay;
let right = self.apf2[1].0.next(right_apf2_delay_ms, self.apf2[1].2, right);
let right = self.delay2[1].0.next_cubic(self.delay2[1].1, right);
self.right_sum = left * decay;
self.left_sum = right * decay;
let mut left_accum = left_apf_tap;
left_accum += self.delay1[0].0.tap_n(DAT_LEFT_TAPS_TIME_MS[0]);
left_accum += self.delay1[0].0.tap_n(DAT_LEFT_TAPS_TIME_MS[1]);
left_accum -= self.apf2[0].0.delay_tap_n(DAT_LEFT_TAPS_TIME_MS[2]);
left_accum += self.delay2[0].0.tap_n(DAT_LEFT_TAPS_TIME_MS[3]);
left_accum -= self.delay1[1].0.tap_n(DAT_LEFT_TAPS_TIME_MS[4]);
left_accum -= self.apf2[1].0.delay_tap_n(DAT_LEFT_TAPS_TIME_MS[5]);
left_accum -= self.delay2[1].0.tap_n(DAT_LEFT_TAPS_TIME_MS[6]);
let mut right_accum = right_apf_tap;
right_accum += self.delay1[1].0.tap_n(DAT_RIGHT_TAPS_TIME_MS[0]);
right_accum += self.delay1[1].0.tap_n(DAT_RIGHT_TAPS_TIME_MS[1]);
right_accum -= self.apf2[1].0.delay_tap_n(DAT_RIGHT_TAPS_TIME_MS[2]);
right_accum += self.delay2[1].0.tap_n(DAT_RIGHT_TAPS_TIME_MS[3]);
right_accum -= self.delay1[0].0.tap_n(DAT_RIGHT_TAPS_TIME_MS[4]);
right_accum -= self.apf2[0].0.delay_tap_n(DAT_RIGHT_TAPS_TIME_MS[5]);
right_accum -= self.delay2[0].0.tap_n(DAT_RIGHT_TAPS_TIME_MS[6]);
let left_out = self.out_dc_block[0].next(left_accum);
let right_out = self.out_dc_block[1].next(right_accum);
self.dbg_count += 1;
(left_out * 0.5, right_out * 0.5)
}
}