HexoDSP/tests/basics.rs
2021-06-28 03:48:02 +02:00

1177 lines
39 KiB
Rust

mod common;
use common::*;
#[test]
fn check_matrix_sine() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(2);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, sin.out("sig"), None));
matrix.place(1, 0, Cell::empty(out)
.input(None, out.inp("ch1"), None));
matrix.sync().unwrap();
let (mut out_l, out_r) = run_no_input(&mut node_exec, 4.0);
let sum_l : f32 = out_l.iter().map(|v| v.abs()).sum();
let sum_r : f32 = out_r.iter().map(|v| v.abs()).sum();
assert_float_eq!(sum_l.floor(), 112301.0);
assert_float_eq!(sum_r, 0.0);
save_wav("check_matrix_sine.wav", &out_l);
let rms_mimax = calc_rms_mimax_each_ms(&out_l[..], 1000.0);
for i in 0..4 {
assert_float_eq!(rms_mimax[i].0, 0.5);
assert_float_eq!(rms_mimax[i].1, -0.9999999);
assert_float_eq!(rms_mimax[i].2, 0.9999999);
}
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F1024, 100, 0.0);
assert_eq!(fft_res[0], (431, 248));
assert_eq!(fft_res[1], (474, 169));
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F1024, 100, 1000.0);
assert_eq!(fft_res[0], (431, 248));
assert_eq!(fft_res[1], (474, 169));
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F1024, 100, 1500.0);
assert_eq!(fft_res[0], (431, 248));
assert_eq!(fft_res[1], (474, 169));
let sin_led_val = matrix.led_value_for(&sin);
let out_led_val = matrix.led_value_for(&out);
assert_float_eq!(sin_led_val, -0.057622954);
assert_float_eq!(out_led_val, -0.057622954);
}
#[test]
fn check_matrix_atom_set() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(2);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, sin.out("sig"), None));
matrix.place(1, 0, Cell::empty(out)
.input(None, out.inp("ch1"), None));
matrix.sync().unwrap();
let mono_param = out.inp_param("mono").unwrap();
matrix.set_param(mono_param, SAtom::setting(1));
let (out_l, out_r) = run_no_input(&mut node_exec, 4.0);
let sum_l : f32 = out_l.iter().map(|v| v.abs()).sum();
let sum_r : f32 = out_r.iter().map(|v| v.abs()).sum();
assert_float_eq!(sum_l.floor(), 112301.0);
assert_float_eq!(sum_r.floor(), 112301.0);
let rms_mimax = calc_rms_mimax_each_ms(&out_l[..], 1000.0);
for i in 0..4 {
assert_float_eq!(rms_mimax[i].0, 0.5);
assert_float_eq!(rms_mimax[i].1, -0.9999999);
assert_float_eq!(rms_mimax[i].2, 0.9999999);
}
let rms_mimax = calc_rms_mimax_each_ms(&out_r[..], 1000.0);
for i in 0..4 {
assert_float_eq!(rms_mimax[i].0, 0.5);
assert_float_eq!(rms_mimax[i].1, -0.9999999);
assert_float_eq!(rms_mimax[i].2, 0.9999999);
}
}
#[test]
fn check_sine_pitch_change() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(2);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, sin.out("sig"), None));
matrix.place(1, 0, Cell::empty(out)
.input(None, out.inp("ch1"), None));
matrix.sync().unwrap();
let (mut out_l, _out_r) = run_no_input(&mut node_exec, 0.2);
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F1024, 200, 0.0);
assert_eq!(fft_res[0], (431, 248));
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F64, 20, 100.0);
assert_eq!(fft_res[0], (0, 22));
let freq_param = sin.inp_param("freq").unwrap();
matrix.set_param(
freq_param,
SAtom::param(freq_param.norm(4400.0)));
let (mut out_l, _out_r) = run_no_input(&mut node_exec, 1.0);
// Test at the start of the slope (~ 690 Hz):
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F64, 15, 0.0);
assert_eq!(fft_res[0], (0, 18));
assert_eq!(fft_res[1], (689, 15));
// In the middle (~ 2067 Hz):
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F64, 10, 5.0);
assert_eq!(fft_res[0], (1378, 14));
assert_eq!(fft_res[1], (2067, 12));
// Goal (~ 4134 Hz)
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F64, 14, 10.0);
assert_eq!(fft_res[0], (4134, 14));
// Test the freq after the slope in high res (closer to 4400 Hz):
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F1024, 200, 400.0);
assert_eq!(fft_res[0], (4393, 251));
}
#[test]
fn check_detune_parameter() {
let sin = NodeId::Sin(0);
let det_param = sin.inp_param("det").unwrap();
assert_float_eq!(det_param.norm(12.0), 0.1);
assert_float_eq!(det_param.norm(-12.0), -0.1);
assert_float_eq!(det_param.norm(24.0), 0.2);
assert_float_eq!(det_param.norm(-24.0), -0.2);
}
#[test]
fn check_sine_freq_detune() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, sin.out("sig"), None));
matrix.place(1, 0, Cell::empty(out)
.input(None, out.inp("ch1"), None));
matrix.sync().unwrap();
let freq_param = sin.inp_param("freq").unwrap();
let det_param = sin.inp_param("det").unwrap();
run_no_input(&mut node_exec, 50.0);
let cfreq = run_and_get_counted_freq(&mut node_exec, 1000.0);
assert_float_eq!(cfreq.floor(), 440.0);
matrix.set_param(freq_param, SAtom::param(freq_param.norm(4400.0)));
run_no_input(&mut node_exec, 50.0);
let cfreq = run_and_get_counted_freq(&mut node_exec, 2000.0);
assert_float_eq!(cfreq.floor(), 4400.0);
matrix.set_param(freq_param, SAtom::param(freq_param.norm(50.0)));
run_no_input(&mut node_exec, 50.0);
let cfreq = run_and_get_counted_freq(&mut node_exec, 1000.0);
assert_float_eq!(cfreq.floor(), 50.0);
matrix.set_param(freq_param, SAtom::param(freq_param.norm(440.0)));
matrix.set_param(det_param, SAtom::param(det_param.norm(12.0)));
run_no_input(&mut node_exec, 50.0);
let cfreq = run_and_get_counted_freq(&mut node_exec, 1000.0);
assert_float_eq!(cfreq.floor(), 880.0);
matrix.set_param(det_param, SAtom::param(det_param.norm(1.0)));
run_no_input(&mut node_exec, 50.0);
let cfreq = run_and_get_counted_freq(&mut node_exec, 1000.0);
assert_float_eq!(cfreq.floor(), 466.0);
matrix.set_param(det_param, SAtom::param(det_param.norm(-1.0)));
run_no_input(&mut node_exec, 50.0);
let cfreq = run_and_get_counted_freq(&mut node_exec, 2000.0);
assert_float_eq!(cfreq.floor(), 415.0);
matrix.set_param(det_param, SAtom::param(det_param.norm(-14.0)));
run_no_input(&mut node_exec, 50.0);
let cfreq = run_and_get_counted_freq(&mut node_exec, 1000.0);
assert_float_eq!(cfreq.floor(), 196.0);
}
#[test]
fn check_matrix_monitor() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(2);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.input(sin.inp("freq"), sin.inp("freq"), sin.inp("freq"))
.out(sin.out("sig"), sin.out("sig"), sin.out("sig")));
matrix.place(1, 0, Cell::empty(out)
.input(None, out.inp("ch1"), None));
matrix.sync().unwrap();
// Go to 220Hz
let freq_param = sin.inp_param("freq").unwrap();
matrix.set_param(freq_param, SAtom::param(-0.1));
matrix.monitor_cell(*matrix.get(0, 0).unwrap());
let (mut out_l, _out_r) =
run_realtime_no_input(&mut node_exec, 0.2, true);
// Give the MonitorProcessor some time to work on the buffers.
std::thread::sleep(std::time::Duration::from_millis(100));
//assert!(false);
for i in 0..3 {
let sl = matrix.get_minmax_monitor_samples(i);
//d// println!("SL={:?}", sl);
//d// println!("=> {}", i);
assert_eq!((sl[sl.len() - 1].0 * 10000.0) as i64, -1000);
assert_eq!((sl[sl.len() - 1].1 * 10000.0) as i64, -1000);
assert_eq!((sl[sl.len() - 11].0 * 10000.0) as i64, -1000);
// Here we see that the paramter is smoothed in:
assert_eq!((sl[sl.len() - 11].1 * 10000.0) as i64, -2);
assert_eq!((sl[sl.len() - 12].0 * 10000.0) as i64, 0);
assert_eq!((sl[sl.len() - 12].1 * 10000.0) as i64, 0);
}
for i in 3..6 {
let sl = matrix.get_minmax_monitor_samples(i);
//d// println!("SL={:?}", sl);
//d// println!("=> {}", i);
assert_eq!((sl[sl.len() - 1].0 * 10000.0) as i64, -9999);
assert_eq!((sl[sl.len() - 1].1 * 10000.0) as i64, 9999);
assert_eq!((sl[sl.len() - 11].0 * 10000.0) as i64, -9999);
assert_eq!((sl[sl.len() - 11].1 * 10000.0) as i64, 9999);
assert_eq!((sl[sl.len() - 12].0 * 10000.0) as i64, 0);
assert_eq!((sl[sl.len() - 12].1 * 10000.0) as i64, 0);
}
let rms_mimax = calc_rms_mimax_each_ms(&out_l[..], 50.0);
assert_float_eq!(rms_mimax[0].0, 0.5013241);
// let ta = std::time::Instant::now();
// Test the freq after the slope in high res (closer to 4400 Hz):
let fft_res = fft_thres_at_ms(&mut out_l[..], FFT::F1024, 200, 50.0);
// let ta = std::time::Instant::now().duration_since(ta);
// println!("ta Elapsed: {:?}", ta);
// assert!(false);
// 220Hz is one Octave below 440Hz
assert_eq!(fft_res[0], (215, 253));
}
#[test]
fn check_matrix_monitor_bug_1() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let amp = NodeId::Amp(1);
matrix.place(0, 0, Cell::empty(sin)
.out(None, sin.out("sig"), None));
matrix.place(1, 0, Cell::empty(amp)
.out(None, None, amp.out("sig"))
.input(None, amp.inp("inp"), None));
matrix.sync().unwrap();
matrix.monitor_cell(*matrix.get(1, 0).unwrap());
let (_out_l, _out_r) =
run_realtime_no_input(&mut node_exec, 0.2, true);
std::thread::sleep(std::time::Duration::from_millis(100));
for i in [0, 2, 3, 4].iter() {
let sl = matrix.get_minmax_monitor_samples(*i);
assert_eq!((sl[sl.len() - 1].0 * 10000.0) as i64, 0);
assert_eq!((sl[sl.len() - 1].1 * 10000.0) as i64, 0);
}
for i in [1, 5].iter() {
let sl = matrix.get_minmax_monitor_samples(*i);
assert_eq!((sl[sl.len() - 1].0 * 10000.0) as i64, -9999);
assert_eq!((sl[sl.len() - 1].1 * 10000.0) as i64, 9999);
}
}
#[test]
fn check_matrix_out_config_bug1() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 7, 7);
matrix.place(0, 0, Cell::empty(NodeId::Sin(0))
.out(None, Some(0), None));
matrix.place(1, 0, Cell::empty(NodeId::Out(0))
.input(None, Some(0), None)
.out(None, None, Some(0)));
matrix.place(0, 1, Cell::empty(NodeId::Sin(1))
.out(None, Some(0), None));
matrix.place(1, 2, Cell::empty(NodeId::Sin(0))
.input(None, Some(0), None)
.out(None, None, Some(0)));
matrix.place(1, 1, Cell::empty(NodeId::Out(0))
.input(Some(1), Some(0), None)
.out(None, None, Some(0)));
assert!(matrix.sync().is_err());
let (_out_l, _out_r) = run_no_input(&mut node_exec, 0.2);
}
#[test]
fn check_matrix_out_config_bug1_reduced() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 7, 7);
matrix.place(1, 0, Cell::empty(NodeId::Out(0))
.input(Some(0), None, None)
.out(None, None, Some(0)));
matrix.place(1, 2, Cell::empty(NodeId::Out(0))
.input(Some(0), None, None)
.out(None, None, None));
matrix.sync().unwrap();
let (_out_l, _out_r) = run_no_input(&mut node_exec, 0.2);
}
#[test]
fn check_matrix_out_config_bug1b_reduced() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 7, 7);
matrix.place(1, 0, Cell::empty(NodeId::Out(0))
.out(None, None, Some(0)));
matrix.place(1, 1, Cell::empty(NodeId::Out(0))
.input(Some(0), None, None));
assert!(matrix.sync().is_err());
let (_out_l, _out_r) = run_no_input(&mut node_exec, 0.2);
}
#[test]
fn check_matrix_out_config_bug1c_reduced() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 7, 7);
matrix.place(1, 0, Cell::empty(NodeId::Sin(0))
.out(None, None, Some(0)));
matrix.place(1, 1, Cell::empty(NodeId::Out(0))
.input(Some(9), None, None));
matrix.sync().unwrap();
let (_out_l, _out_r) = run_no_input(&mut node_exec, 0.2);
}
macro_rules! simple_sine_output_test {
($matrix: ident, $block: tt) => {
let (node_conf, mut node_exec) = new_node_engine();
let mut $matrix = Matrix::new(node_conf, 7, 7);
$block;
$matrix.sync().unwrap();
let (out_l, _out_r) = run_no_input(&mut node_exec, 0.2);
let rms_mimax = calc_rms_mimax_each_ms(&out_l[..], 50.0);
assert_float_eq!(rms_mimax[0].0, 0.5);
assert_float_eq!(rms_mimax[0].1, -0.9999999);
assert_float_eq!(rms_mimax[0].2, 0.9999999);
}
}
#[test]
fn check_matrix_connect_even_top_left() {
simple_sine_output_test!(matrix, {
matrix.place(1, 0, Cell::empty(NodeId::Sin(0))
.out(None, Some(0), None));
matrix.place(2, 1, Cell::empty(NodeId::Out(0))
.input(None, Some(0), None));
});
}
#[test]
fn check_matrix_connect_even_bottom_left() {
simple_sine_output_test!(matrix, {
matrix.place(1, 1, Cell::empty(NodeId::Sin(0))
.out(Some(0), None, None));
matrix.place(2, 1, Cell::empty(NodeId::Out(0))
.input(None, None, Some(0)));
});
}
#[test]
fn check_matrix_connect_even_top() {
simple_sine_output_test!(matrix, {
matrix.place(0, 0, Cell::empty(NodeId::Sin(0))
.out(None, None, Some(0)));
matrix.place(0, 1, Cell::empty(NodeId::Out(0))
.input(Some(0), None, None));
});
}
#[test]
fn check_matrix_connect_odd_top_left() {
simple_sine_output_test!(matrix, {
matrix.place(0, 0, Cell::empty(NodeId::Sin(0))
.out(None, Some(0), None));
matrix.place(1, 0, Cell::empty(NodeId::Out(0))
.input(None, Some(0), None));
});
}
#[test]
fn check_matrix_connect_odd_bottom_left() {
simple_sine_output_test!(matrix, {
matrix.place(0, 1, Cell::empty(NodeId::Sin(0))
.out(Some(0), None, None));
matrix.place(1, 0, Cell::empty(NodeId::Out(0))
.input(None, None, Some(0)));
});
}
#[test]
fn check_matrix_connect_odd_top() {
simple_sine_output_test!(matrix, {
matrix.place(1, 0, Cell::empty(NodeId::Sin(0))
.out(None, None, Some(0)));
matrix.place(1, 1, Cell::empty(NodeId::Out(0))
.input(Some(0), None, None));
});
}
#[test]
fn check_matrix_adj_odd() {
let (node_conf, _node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 7, 7);
/*
_____
I2 / I1 \ O1
/ \
\ /
I3 \_____/ O2
O3
0 1 2 3
___ ___
0/ \ ___ 0/ \ ___
\___/0/S2 \ \___/0/ \
___ \___/ \___/
1/S1 \ ___
\___/ ___ 1/S3 \ ___
___ 1/S0 \ \___/1/ \
2/S6 \ \___/ \___/
\___/ ___
___ 2/S4 \ ___
2/S5 \ \___/2/ \
\___/ \___/
*/
matrix.place(1, 1, Cell::empty(NodeId::Sin(0))
.out(Some(0), Some(0), Some(0))
.input(Some(0), Some(0), Some(0)));
matrix.place(0, 1, Cell::empty(NodeId::Sin(1))
.out(None, Some(0), None));
matrix.place(1, 0, Cell::empty(NodeId::Sin(2))
.out(None, None, Some(0)));
matrix.place(2, 1, Cell::empty(NodeId::Sin(3))
.input(None, None, Some(0)));
matrix.place(2, 2, Cell::empty(NodeId::Sin(4))
.input(None, Some(0), None));
matrix.place(1, 2, Cell::empty(NodeId::Sin(5))
.input(Some(0), None, None));
matrix.place(0, 2, Cell::empty(NodeId::Sin(6))
.out(Some(0), None, None));
matrix.sync().unwrap();
assert_eq!(
matrix.get_adjacent(1, 1, CellDir::B).unwrap().node_id(),
NodeId::Sin(5));
assert_eq!(
matrix.get_adjacent(1, 1, CellDir::BR).unwrap().node_id(),
NodeId::Sin(4));
assert_eq!(
matrix.get_adjacent(1, 1, CellDir::TR).unwrap().node_id(),
NodeId::Sin(3));
assert_eq!(
matrix.get_adjacent(1, 1, CellDir::T).unwrap().node_id(),
NodeId::Sin(2));
assert_eq!(
matrix.get_adjacent(1, 1, CellDir::TL).unwrap().node_id(),
NodeId::Sin(1));
assert_eq!(
matrix.get_adjacent(1, 1, CellDir::BL).unwrap().node_id(),
NodeId::Sin(6));
}
#[test]
fn check_matrix_adj_even() {
let (node_conf, _node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 7, 7);
/*
_____
I2 / I1 \ O1
/ \
\ /
I3 \_____/ O2
O3
0 1 2 3
___ ___
0/ \ ___ 0/S2 \ ___
\___/0/S1 \ \___/0/S3 \
___ \___/ \___/
1/ \ ___
\___/ ___ 1/S0 \ ___
___ 1/S6 \ \___/1/S4 \
2/ \ \___/ \___/
\___/ ___
___ 2/S5 \ ___
2/ \ \___/2/ \
\___/ \___/
*/
matrix.place(2, 1, Cell::empty(NodeId::Sin(0))
.out(Some(0), Some(0), Some(0))
.input(Some(0), Some(0), Some(0)));
matrix.place(1, 0, Cell::empty(NodeId::Sin(1))
.out(None, Some(0), None));
matrix.place(2, 0, Cell::empty(NodeId::Sin(2))
.out(None, None, Some(0)));
matrix.place(3, 0, Cell::empty(NodeId::Sin(3))
.input(None, None, Some(0)));
matrix.place(3, 1, Cell::empty(NodeId::Sin(4))
.input(None, Some(0), None));
matrix.place(2, 2, Cell::empty(NodeId::Sin(5))
.input(Some(0), None, None));
matrix.place(1, 1, Cell::empty(NodeId::Sin(6))
.out(Some(0), None, None));
matrix.sync().unwrap();
assert_eq!(
matrix.get_adjacent(2, 1, CellDir::B).unwrap().node_id(),
NodeId::Sin(5));
assert_eq!(
matrix.get_adjacent(2, 1, CellDir::BR).unwrap().node_id(),
NodeId::Sin(4));
assert_eq!(
matrix.get_adjacent(2, 1, CellDir::TR).unwrap().node_id(),
NodeId::Sin(3));
assert_eq!(
matrix.get_adjacent(2, 1, CellDir::T).unwrap().node_id(),
NodeId::Sin(2));
assert_eq!(
matrix.get_adjacent(2, 1, CellDir::TL).unwrap().node_id(),
NodeId::Sin(1));
assert_eq!(
matrix.get_adjacent(2, 1, CellDir::BL).unwrap().node_id(),
NodeId::Sin(6));
}
#[test]
fn check_matrix_out_twice_assignment() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 7, 7);
matrix.place(0, 0, Cell::empty(NodeId::Sin(0))
.out(None, Some(0), None));
matrix.place(0, 1, Cell::empty(NodeId::Sin(0))
.out(Some(0), None, None));
matrix.place(1, 0, Cell::empty(NodeId::Out(0))
.input(None, Some(0), Some(0))
.out(None, None, None));
matrix.sync().unwrap();
let (_out_l, _out_r) = run_no_input(&mut node_exec, 0.2);
}
#[test]
fn check_matrix_amp() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let amp = NodeId::Amp(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(amp)
.input(out.inp("ch1"), None, None)
.out(None, None, sin.out("sig")));
matrix.place(0, 2, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.sync().unwrap();
let att_param = amp.inp_param("att").unwrap();
matrix.set_param(att_param, SAtom::param(0.5));
let (rms, _, _) = run_and_get_l_rms_mimax(&mut node_exec, 50.0);
assert_float_eq!(rms, 0.031249225);
matrix.set_param(att_param, SAtom::param(1.0));
let (rms, _, _) = run_and_get_l_rms_mimax(&mut node_exec, 50.0);
assert_float_eq!(rms, 0.49998704);
matrix.set_param(att_param, SAtom::param(0.0));
let (rms, _, _) = run_and_get_l_rms_mimax(&mut node_exec, 50.0);
assert_float_eq!(rms, 0.0);
let gain_param = amp.inp_param("gain").unwrap();
matrix.set_param(att_param, SAtom::param(1.0));
matrix.set_param(gain_param, SAtom::param(0.5));
let (rms, min, max) = run_and_get_l_rms_mimax(&mut node_exec, 50.0);
assert_float_eq!(rms, 0.12499);
assert_float_eq!(min, -0.5);
assert_float_eq!(max, 0.5);
}
#[test]
fn check_matrix_clear() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.sync().unwrap();
let freq_param = sin.inp_param("freq").unwrap();
matrix.set_param(freq_param, SAtom::param(-0.2));
let fft = run_and_get_fft4096(&mut node_exec, 800, 0.0);
// slightly lower counts than later, because we have a slight
// frequency slope after setting the frequency to 110Hz
assert_eq!(fft[0], (108, 989));
let fft = run_and_get_fft4096(&mut node_exec, 800, 10.0);
assert_eq!(fft[0], (108, 993));
matrix.clear();
let fft = run_and_get_fft4096(&mut node_exec, 1, 50.0);
assert_eq!(fft.len(), 0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.sync().unwrap();
let fft = run_and_get_fft4096(&mut node_exec, 800, 50.0);
assert_eq!(fft[0], (441, 1012));
}
#[test]
fn check_matrix_serialize() {
{
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.sync().unwrap();
let freq_param = sin.inp_param("freq").unwrap();
matrix.set_param(freq_param, SAtom::param(-0.2));
let fft = run_and_get_fft4096(&mut node_exec, 800, 10.0);
assert_eq!(fft[0], (108, 993));
hexodsp::save_patch_to_file(&mut matrix, "check_matrix_serialize.hxy")
.unwrap();
}
{
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
hexodsp::load_patch_from_file(
&mut matrix, "check_matrix_serialize.hxy").unwrap();
let fft = run_and_get_fft4096(&mut node_exec, 800, 10.0);
assert_eq!(fft[0], (108, 993));
}
}
#[test]
fn check_matrix_tseq() {
use hexodsp::dsp::tracker::UIPatternModel;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let tsq = NodeId::TSeq(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(tsq)
.input(tsq.inp("clock"), None, None)
.out(None, None, tsq.out("trk1")));
matrix.place(0, 2, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.sync().unwrap();
pset_n(&mut matrix, sin, "freq", -0.978);
pset_s(&mut matrix, tsq, "cmode", 1);
let pat = matrix.get_pattern_data(0).unwrap();
{
let mut pr = pat.borrow_mut();
pr.set_rows(16);
pr.set_cell_value(0, 0, 0xFFF);
pr.set_cell_value(15, 0, 0x000);
}
for _ in 0..10 {
matrix.check_pattern_data(0);
}
// We let the clock mode tune in:
run_and_undersample(&mut node_exec, 10000.0, 1);
// Take some real samples:
let samples = run_and_undersample(&mut node_exec, 2000.0, 10);
assert_float_eq!(samples[0], 0.3157);
assert_float_eq!(samples[1], 0.209);
assert_float_eq!(samples[2], 0.1024);
assert_float_eq!(samples[3], 0.0648);
assert_float_eq!(samples[4], 0.95566);
assert_float_eq!(samples[5], 0.84899);
assert_float_eq!(samples[6], 0.74231);
assert_float_eq!(samples[7], 0.6356);
assert_float_eq!(samples[8], 0.5289);
assert_float_eq!(samples[9], 0.42228);
// switch to row trigger:
pset_s(&mut matrix, tsq, "cmode", 0);
let samples = run_and_undersample(&mut node_exec, 2000.0, 5);
assert_vec_feq!(samples, vec![0.70411, 0.90413, 0.99306, 0.97972, 0.966387]);
// set to phase mode:
pset_s(&mut matrix, tsq, "cmode", 2);
let samples = run_and_undersample(&mut node_exec, 1000.0, 5);
assert_float_eq!(samples[0], 0.2491);
assert_float_eq!(samples[1], 0.0026);
assert_float_eq!(samples[2], 0.1616);
assert_float_eq!(samples[3], 0.6655);
assert_float_eq!(samples[4], 0.8104);
}
#[test]
fn check_matrix_tseq_trig() {
use hexodsp::dsp::tracker::UIPatternModel;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let tsq = NodeId::TSeq(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(tsq)
.input(tsq.inp("clock"), None, None)
.out(None, None, tsq.out("trk1")));
matrix.place(0, 2, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.sync().unwrap();
pset_n(&mut matrix, sin, "freq", -0.978);
pset_s(&mut matrix, tsq, "cmode", 1);
let pat = matrix.get_pattern_data(0).unwrap();
{
let mut pr = pat.borrow_mut();
pr.set_rows(16);
pr.set_cell_value(0, 0, 0xFFF);
pr.set_cell_value(15, 0, 0x000);
}
for _ in 0..10 {
matrix.check_pattern_data(0);
}
// We let the clock mode tune in:
run_and_undersample(&mut node_exec, 10000.0, 1);
// Take some real samples:
let samples = run_and_undersample(&mut node_exec, 2000.0, 10);
assert_float_eq!(samples[0], 0.3157);
assert_float_eq!(samples[1], 0.209);
assert_float_eq!(samples[2], 0.1024);
assert_float_eq!(samples[3], 0.0648);
assert_float_eq!(samples[4], 0.95566);
assert_float_eq!(samples[5], 0.84899);
assert_float_eq!(samples[6], 0.74231);
assert_float_eq!(samples[7], 0.6356);
assert_float_eq!(samples[8], 0.5289);
assert_float_eq!(samples[9], 0.42228);
pset_n(&mut matrix, tsq, "trig", 1.0);
// Take some real samples:
let samples = run_and_undersample(&mut node_exec, 2000.0, 10);
assert_float_eq!(samples[0], 0.3157);
// trigger hits:
assert_float_eq!(samples[1], 0.9639);
assert_float_eq!(samples[2], 0.8572);
assert_float_eq!(samples[3], 0.7506);
assert_float_eq!(samples[4], 0.6439);
assert_float_eq!(samples[5], 0.5372);
assert_float_eq!(samples[6], 0.4305);
assert_float_eq!(samples[7], 0.3239);
}
#[test]
fn check_matrix_tseq_gate() {
use hexodsp::dsp::tracker::UIPatternModel;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let tsq = NodeId::TSeq(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(tsq)
.input(tsq.inp("clock"), None, None)
.out(None, None, tsq.out("trk1")));
matrix.place(0, 2, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.sync().unwrap();
let freq_param = sin.inp_param("freq").unwrap();
matrix.set_param(freq_param, SAtom::param(-0.978));
let cmode_param = tsq.inp_param("cmode").unwrap();
matrix.set_param(cmode_param, SAtom::setting(1));
let pat = matrix.get_pattern_data(0).unwrap();
{
let mut pr = pat.borrow_mut();
pr.set_rows(16);
pr.set_col_gate_type(0);
// pulse_width:
// 0xF - Gate is on for full row
// 0x0 - Gate is on for a very short burst
// row_div:
// 0xF - Row has 1 Gate
// 0x0 - Row is divided up into 16 Gates
// probability:
// 0xF - Row is always triggered
// 0x7 - Row fires only in 50% of the cases
// 0x0 - Row fires only in ~6% of the cases
pr.set_cell_value(5, 0, 0xFFF);
pr.set_cell_value(7, 0, 0xFF0);
pr.set_cell_value(9, 0, 0xF00);
}
for _ in 0..10 {
matrix.check_pattern_data(0);
}
// We let the clock mode tune in:
run_and_undersample(&mut node_exec, 11100.0, 1);
// Take some real samples:
let samples = run_and_undersample(&mut node_exec, 2000.0, 2000);
assert_float_eq!(samples[117], 0.0);
for i in 118..243 {
assert_float_eq!(samples[i], 1.0);
}
assert_float_eq!(samples[243], 0.0);
assert_float_eq!(samples[367], 0.0);
for i in 368..376 {
assert_float_eq!(samples[i], 1.0);
}
assert_float_eq!(samples[376], 0.0);
assert_float_eq!(samples[680], 0.0);
assert_float_eq!(samples[681], 1.0);
assert_float_eq!(samples[682], 0.0);
assert_float_eq!(samples[688], 0.0);
assert_float_eq!(samples[689], 1.0);
assert_float_eq!(samples[690], 0.0);
}
#[test]
fn check_matrix_tseq_2col_gate_bug() {
use hexodsp::dsp::tracker::UIPatternModel;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let tsq = NodeId::TSeq(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(tsq)
.input(tsq.inp("clock"), None, None)
.out(None, None, tsq.out("trk2")));
matrix.place(0, 2, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.sync().unwrap();
let freq_param = sin.inp_param("freq").unwrap();
matrix.set_param(freq_param, SAtom::param(0.0));
let cmode_param = tsq.inp_param("cmode").unwrap();
matrix.set_param(cmode_param, SAtom::setting(1));
let pat = matrix.get_pattern_data(0).unwrap();
{
let mut pr = pat.borrow_mut();
pr.set_rows(2);
pr.set_col_value_type(0);
pr.set_col_gate_type(1);
// pulse_width:
// 0xF - Gate is on for full row
// 0x0 - Gate is on for a very short burst
// row_div:
// 0xF - Row has 1 Gate
// 0x0 - Row is divided up into 16 Gates
// probability:
// 0xF - Row is always triggered
// 0x7 - Row fires only in 50% of the cases
// 0x0 - Row fires only in ~6% of the cases
pr.set_cell_value(0, 0, 0xFFF);
pr.set_cell_value(1, 0, 0x000);
pr.set_cell_value(0, 1, 0x0FF);
pr.set_cell_value(1, 1, 0x000);
}
for _ in 0..10 {
matrix.check_pattern_data(0);
}
let samples = run_and_undersample(&mut node_exec, 10000.0, 100000);
let mut any_non_zero = false;
for s in samples.iter() {
if *s > 0.0 { any_non_zero = true; }
}
assert!(any_non_zero);
}
#[test]
fn check_matrix_output_feedback() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let amp = NodeId::Amp(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(amp)
.input(amp.inp("inp"), None, None));
matrix.sync().unwrap();
let gain_p = amp.inp_param("gain").unwrap();
matrix.set_param(gain_p, SAtom::param(0.25));
for _ in 0..10 {
node_exec.test_run(0.11, true);
matrix.update_filters();
matrix.filtered_out_fb_for(&sin, sin.out("sig").unwrap());
matrix.filtered_out_fb_for(&amp, amp.out("sig").unwrap());
}
let o_sin = matrix.out_fb_for(&sin, sin.out("sig").unwrap()).unwrap();
let o_amp = matrix.out_fb_for(&amp, amp.out("sig").unwrap()).unwrap();
let fo_sin = matrix.filtered_out_fb_for(&sin, sin.out("sig").unwrap());
let fo_amp = matrix.filtered_out_fb_for(&amp, amp.out("sig").unwrap());
assert_float_eq!(o_sin, -0.061266);
assert_float_eq!(o_amp, -0.007658);
assert_float_eq!(fo_sin.0, 0.96846);
assert_float_eq!(fo_sin.1, 0.9302191);
assert_float_eq!(fo_amp.0, 0.12105);
assert_float_eq!(fo_amp.1, 0.11627);
}
#[test]
fn check_matrix_node_feedback() {
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 7, 7);
let sin = NodeId::Sin(0);
let sin2 = NodeId::Sin(1);
let wr = NodeId::FbWr(0);
let rd = NodeId::FbRd(0);
let wr2 = NodeId::FbWr(1);
let rd2 = NodeId::FbRd(1);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin).out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(wr) .input(wr.inp("inp"), None, None));
matrix.place(1, 0, Cell::empty(rd) .out(None, None, rd.out("sig")));
matrix.place(1, 1, Cell::empty(out).input(out.inp("ch1"), None, None));
matrix.place(0, 2, Cell::empty(sin2).out(None, None, sin2.out("sig")));
matrix.place(0, 3, Cell::empty(wr2) .input(wr2.inp("inp"), None, None));
matrix.place(1, 2, Cell::empty(rd2) .out(None, None, rd2.out("sig")));
matrix.place(1, 3, Cell::empty(out) .input(out.inp("ch2"), None, None));
matrix.sync().unwrap();
let freq_param = sin2.inp_param("freq").unwrap();
matrix.set_param(freq_param, SAtom::param(freq_param.norm(880.0)));
let (out_l, out_r) = run_for_ms(&mut node_exec, 10.0);
assert_decimated_feq!(
out_l, 15, vec![
// The initial zeros are the feedback delays:
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.68328893, 0.9925844, 0.48698083, -0.4184115, -0.9803018,
-0.73738277, 0.110905044, 0.8681419, 0.9126584, 0.20790927,
-0.6675302, -0.99494797, -0.50553185, 0.39891028, 0.97586703,
0.7516482, -0.089641616, -0.8573498, -0.9211795, -0.22875604 ]);
assert_decimated_feq!(
out_r, 15, vec![
// The initial zeros are the feedback delays:
// The frequency will be established a bit later because
// the parameter setting of 880 Hz will be smoothed:
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.6889244, 0.9872897, 0.40561166, -0.5643036, -0.99751425,
-0.42060927, 0.6112674, 0.979101, 0.21974884, -0.81355125,
-0.83687085, 0.23462467, 0.9970811, 0.35165882, -0.8186541,
-0.7396998, 0.5222105, 0.9234876, -0.2683919, -0.983062 ]);
// Let the frequency settle...
run_for_ms(&mut node_exec, 80.0);
let (mut out_l, mut out_r) = run_for_ms(&mut node_exec, 50.0);
let fft_res_l = fft_thres_at_ms(&mut out_l[..], FFT::F1024, 100, 0.0);
assert_eq!(fft_res_l[0], (431, 245));
assert_eq!(fft_res_l[1], (474, 170));
let fft_res_r = fft_thres_at_ms(&mut out_r[..], FFT::F1024, 100, 0.0);
assert_eq!(fft_res_r[0], (861, 224));
assert_eq!(fft_res_r[1], (904, 206));
}
#[test]
fn check_matrix_tseq_perf() {
use hexodsp::dsp::tracker::UIPatternModel;
let (node_conf, mut node_exec) = new_node_engine();
let mut matrix = Matrix::new(node_conf, 3, 3);
let sin = NodeId::Sin(0);
let tsq = NodeId::TSeq(0);
let out = NodeId::Out(0);
matrix.place(0, 0, Cell::empty(sin)
.out(None, None, sin.out("sig")));
matrix.place(0, 1, Cell::empty(tsq)
.input(tsq.inp("clock"), None, None)
.out(None, None, tsq.out("trk1")));
matrix.place(0, 2, Cell::empty(out)
.input(out.inp("ch1"), None, None));
matrix.sync().unwrap();
let freq_param = sin.inp_param("freq").unwrap();
// matrix.set_param(freq_param, SAtom::param(-0.978));
matrix.set_param(freq_param, SAtom::param(0.0));
let cmode_param = tsq.inp_param("cmode").unwrap();
matrix.set_param(cmode_param, SAtom::setting(0));
// matrix.set_param(cmode_param, SAtom::setting(2));
let pat = matrix.get_pattern_data(0).unwrap();
{
let mut pr = pat.borrow_mut();
pr.set_rows(16);
pr.set_col_note_type(0);
pr.set_col_gate_type(1);
pr.set_col_gate_type(2);
pr.set_cell_value(0, 0, 0x0F7);
pr.set_cell_value(4, 0, 0x100);
pr.set_cell_value(8, 0, 0x10F);
pr.set_cell_value(12, 0, 0x0F7);
pr.set_cell_value(0, 1, 0xFF1);
pr.set_cell_value(4, 1, 0xFF1);
pr.set_cell_value(8, 1, 0xFF1);
pr.set_cell_value(12, 1, 0xFF1);
pr.set_cell_value(0, 2, 0xFF1);
pr.set_cell_value(2, 2, 0xFF1);
pr.set_cell_value(4, 2, 0xFF1);
pr.set_cell_value(6, 2, 0xFF1);
pr.set_cell_value(8, 2, 0xFF1);
pr.set_cell_value(10, 2, 0xFF1);
pr.set_cell_value(12, 2, 0xFF1);
pr.set_cell_value(14, 2, 0xFF1);
}
for _ in 0..100 {
matrix.check_pattern_data(0);
}
let mut prev : i64 = 0;
let mut first : i64 = 0;
for _ in 0..10 {
let ta = std::time::Instant::now();
run_for_ms(&mut node_exec, 10000.0);
let dur = std::time::Instant::now().duration_since(ta);
if prev > 0 {
let now = dur.as_millis() as i64;
if first <= 0 { first = now; }
//d// println!("{},{}", prev, now);
assert!((first - now).abs() < (first / 2));
}
prev = dur.as_millis() as i64;
}
}