HexoDSP/src/dsp/node_sfilter.rs

241 lines
8.6 KiB
Rust
Raw Normal View History

2021-07-10 20:16:55 +00:00
// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This is a part of HexoDSP. Released under (A)GPLv3 or any later.
// See README.md and COPYING for details.
use crate::nodes::{NodeAudioContext, NodeExecContext};
use crate::dsp::{NodeId, SAtom, ProcBuf, DspNode, LedPhaseVals, NodeContext};
use crate::dsp::helpers::{
process_1pole_lowpass,
process_1pole_highpass,
process_1pole_tpt_lowpass,
process_1pole_tpt_highpass,
process_hal_chamberlin_svf,
};
2021-07-10 20:16:55 +00:00
#[macro_export]
macro_rules! fa_sfilter_type { ($formatter: expr, $v: expr, $denorm_v: expr) => { {
let s =
match ($v.round() as usize) {
0 => "LP 1p",
1 => "LP 1pt",
2 => "HP 1p",
3 => "HP 1pt",
2021-07-14 03:47:05 +00:00
4 => "LP 12c",
5 => "HP 12c",
6 => "BP 12c",
7 => "NO 12c",
2021-07-10 20:16:55 +00:00
_ => "?",
};
write!($formatter, "{}", s)
} } }
/// A simple amplifier
#[derive(Debug, Clone)]
pub struct SFilter {
israte: f64,
z: f64,
2021-07-10 20:34:03 +00:00
y: f64,
otype: i8,
2021-07-10 20:16:55 +00:00
}
impl SFilter {
pub fn new(_nid: &NodeId) -> Self {
Self {
israte: 1.0 / 44100.0,
z: 0.0,
2021-07-10 20:34:03 +00:00
y: 0.0,
otype: -1,
2021-07-10 20:16:55 +00:00
}
}
pub const inp : &'static str =
"SFilter inp\nSignal input\nRange: (-1..1)\n";
pub const freq : &'static str =
"SFilter freq\nFilter cutoff frequency.\nRange: (-1..1)\n";
pub const res : &'static str =
"SFilter res\nFilter resonance.\nRange: (0..1)\n";
2021-07-10 20:16:55 +00:00
pub const ftype : &'static str =
2021-07-11 09:59:13 +00:00
"SFilter ftype\nThe filter type, there are varying types of \
filters available. Please consult the node documentation for \
a complete list.";
2021-07-10 20:16:55 +00:00
pub const sig : &'static str =
"SFilter sig\nFiltered signal output.\nRange: (-1..1)\n";
pub const DESC : &'static str =
r#"Simple Audio Filter
2021-07-11 09:59:13 +00:00
This is a collection of more or less simple filters.
There are only two parameters: Filter cutoff 'freq' and the 'res'onance.
2021-07-10 20:16:55 +00:00
"#;
pub const HELP : &'static str =
r#"SFilter - Simple Audio Filter
2021-07-11 09:59:13 +00:00
This is a collection of a few more or less simple filters
of varying types. There are only few parameters for you to change: 'freq'
and 'res'onance. You can switch between the types with the 'ftype'.
There are currently following filters available:
HP 1p - One pole low-pass filter (6db)
HP 1pt - One pole low-pass filter (6db) (TPT form)
LP 1p - One pole high-pass filter (6db)
LP 1pt - One pole high-pass filter (6db) (TPT form)
2021-07-14 03:47:05 +00:00
The Hal Chamberlin filters are an older state variable filter design,
that is limited to max cutoff frequency of 16kHz.
LP 12c - Low-pass Hal Chamberlin state variable filter (12dB)
HP 12c - High-pass Hal Chamberlin state variable filter (12dB)
BP 12c - Band-pass Hal Chamberlin state variable filter (12dB)
NO 12c - Notch Hal Chamberlin state variable filter (12dB)
2021-07-10 20:16:55 +00:00
"#;
}
impl DspNode for SFilter {
fn outputs() -> usize { 1 }
fn set_sample_rate(&mut self, srate: f32) {
self.israte = 1.0 / (srate as f64);
}
fn reset(&mut self) {
self.z = 0.0;
self.y = 0.0;
self.otype = -1;
2021-07-10 20:16:55 +00:00
}
#[inline]
fn process<T: NodeAudioContext>(
&mut self, ctx: &mut T, _ectx: &mut NodeExecContext,
_nctx: &NodeContext,
atoms: &[SAtom], inputs: &[ProcBuf],
outputs: &mut [ProcBuf], ctx_vals: LedPhaseVals)
{
use crate::dsp::{out, inp, denorm, at};
let inp = inp::SFilter::inp(inputs);
let freq = inp::SFilter::freq(inputs);
let res = inp::SFilter::res(inputs);
2021-07-10 20:16:55 +00:00
let ftype = at::SFilter::ftype(atoms);
let out = out::SFilter::sig(outputs);
let ftype = ftype.i() as i8;
if ftype != self.otype {
self.y = 0.0;
self.z = 0.0;
self.otype = ftype;
}
match ftype {
0 => { // Lowpass
2021-07-10 20:16:55 +00:00
for frame in 0..ctx.nframes() {
let input = inp.read(frame) as f64;
let freq = denorm::SFilter::freq(freq, frame) as f64;
let freq = freq.clamp(1.0, 22000.0);
out.write(frame,
process_1pole_lowpass(
input, freq, self.israte, &mut self.z)
as f32);
2021-07-10 20:16:55 +00:00
}
},
1 => { // Lowpass TPT
2021-07-10 20:16:55 +00:00
for frame in 0..ctx.nframes() {
let input = inp.read(frame) as f64;
let freq = denorm::SFilter::freq(freq, frame) as f64;
let freq = freq.clamp(1.0, 22000.0);
out.write(frame,
process_1pole_tpt_lowpass(
input, freq, self.israte, &mut self.z)
as f32);
}
},
2 => { // Highpass
for frame in 0..ctx.nframes() {
let input = inp.read(frame) as f64;
let freq = denorm::SFilter::freq(freq, frame) as f64;
let freq = freq.clamp(1.0, 22000.0);
out.write(frame,
process_1pole_highpass(
input, freq, self.israte, &mut self.z, &mut self.y)
as f32);
}
},
3 => { // Highpass TPT
for frame in 0..ctx.nframes() {
let input = inp.read(frame) as f64;
let freq = denorm::SFilter::freq(freq, frame) as f64;
let freq = freq.clamp(1.0, 22000.0);
out.write(frame,
process_1pole_tpt_highpass(
input, freq, self.israte, &mut self.z)
as f32);
2021-07-10 20:34:03 +00:00
}
},
4 => { // Low Pass Hal Chamberlin SVF
for frame in 0..ctx.nframes() {
let input = inp.read(frame) as f64;
let freq = denorm::SFilter::freq(freq, frame) as f64;
let freq = freq.clamp(2.0, 16000.0);
let res = denorm::SFilter::res(res, frame) as f64;
let res = res.clamp(0.0, 0.99);
let (_high, _notch) =
process_hal_chamberlin_svf(
input, freq, res, self.israte,
&mut self.z, &mut self.y);
out.write(frame, self.y as f32);
}
},
5 => { // High Pass Hal Chamberlin SVF
for frame in 0..ctx.nframes() {
let input = inp.read(frame) as f64;
let freq = denorm::SFilter::freq(freq, frame) as f64;
let freq = freq.clamp(1.0, 16000.0);
let res = denorm::SFilter::res(res, frame) as f64;
let res = res.clamp(0.0, 0.99);
let (high, _notch) =
process_hal_chamberlin_svf(
input, freq, res, self.israte,
&mut self.z, &mut self.y);
out.write(frame, high as f32);
}
},
6 => { // Band Pass Hal Chamberlin SVF
for frame in 0..ctx.nframes() {
let input = inp.read(frame) as f64;
let freq = denorm::SFilter::freq(freq, frame) as f64;
let freq = freq.clamp(1.0, 16000.0);
let res = denorm::SFilter::res(res, frame) as f64;
let res = res.clamp(0.0, 0.99);
let (_high, _notch) =
process_hal_chamberlin_svf(
input, freq, res, self.israte,
&mut self.z, &mut self.y);
out.write(frame, self.z as f32);
}
},
7 => { // Notch Hal Chamberlin SVF
for frame in 0..ctx.nframes() {
let input = inp.read(frame) as f64;
let freq = denorm::SFilter::freq(freq, frame) as f64;
let freq = freq.clamp(1.0, 16000.0);
let res = denorm::SFilter::res(res, frame) as f64;
let res = res.clamp(0.0, 0.99);
let (_high, notch) =
process_hal_chamberlin_svf(
input, freq, res, self.israte,
&mut self.z, &mut self.y);
out.write(frame, notch as f32);
}
},
2021-07-10 20:16:55 +00:00
_ => {},
}
ctx_vals[0].set(out.read(ctx.nframes() - 1));
2021-07-10 20:16:55 +00:00
}
}