Working on making the stuff in hexodsp::dsp::helpers f32/f64 agnostic

This commit is contained in:
Weird Constructor 2021-08-08 00:56:10 +02:00
parent 525c8d8c1b
commit d6c1a38102
7 changed files with 187 additions and 179 deletions

View file

@ -20,6 +20,7 @@ lazy_static = "1.4.0"
#hexotk = { optional = true, git = "https://github.com/WeirdConstructor/HexoTK.git" }
#hexotk = { optional = true, path = "../hexotk" }
hound = "3.4.0"
num-traits = "0.2.14"
[dev-dependencies]
num-complex = "0.2"

View file

@ -17,29 +17,29 @@
use crate::dsp::helpers::crossfade;
const DAT_SAMPLE_RATE : f32 = 29761.0;
const DAT_SAMPLES_PER_MS : f32 = DAT_SAMPLE_RATE / 1000.0;
const DAT_SAMPLE_RATE : f64 = 29761.0;
const DAT_SAMPLES_PER_MS : f64 = DAT_SAMPLE_RATE / 1000.0;
const DAT_INPUT_APF_TIMES_MS : [f32; 4] = [
const DAT_INPUT_APF_TIMES_MS : [f64; 4] = [
141.0 / DAT_SAMPLES_PER_MS,
107.0 / DAT_SAMPLES_PER_MS,
379.0 / DAT_SAMPLES_PER_MS,
277.0 / DAT_SAMPLES_PER_MS,
];
const DAT_LEFT_APF1_TIME_MS : f32 = 672.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_APF2_TIME_MS : f32 = 1800.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_APF1_TIME_MS : f64 = 672.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_APF2_TIME_MS : f64 = 1800.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_APF1_TIME_MS : f32 = 908.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_APF2_TIME_MS : f32 = 2656.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_APF1_TIME_MS : f64 = 908.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_APF2_TIME_MS : f64 = 2656.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_DELAY1_TIME_MS : f32 = 4453.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_DELAY2_TIME_MS : f32 = 3720.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_DELAY1_TIME_MS : f64 = 4453.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_DELAY2_TIME_MS : f64 = 3720.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_DELAY1_TIME_MS : f32 = 4217.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_DELAY2_TIME_MS : f32 = 3163.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_DELAY1_TIME_MS : f64 = 4217.0 / DAT_SAMPLES_PER_MS;
const DAT_RIGHT_DELAY2_TIME_MS : f64 = 3163.0 / DAT_SAMPLES_PER_MS;
const DAT_LEFT_TAPS_TIME_MS : [f32; 7] = [
const DAT_LEFT_TAPS_TIME_MS : [f64; 7] = [
266.0 / DAT_SAMPLES_PER_MS,
2974.0 / DAT_SAMPLES_PER_MS,
1913.0 / DAT_SAMPLES_PER_MS,
@ -49,7 +49,7 @@ const DAT_LEFT_TAPS_TIME_MS : [f32; 7] = [
1066.0 / DAT_SAMPLES_PER_MS,
];
const DAT_RIGHT_TAPS_TIME_MS : [f32; 7] = [
const DAT_RIGHT_TAPS_TIME_MS : [f64; 7] = [
353.0 / DAT_SAMPLES_PER_MS,
3627.0 / DAT_SAMPLES_PER_MS,
1228.0 / DAT_SAMPLES_PER_MS,
@ -59,15 +59,15 @@ const DAT_RIGHT_TAPS_TIME_MS : [f32; 7] = [
121.0 / DAT_SAMPLES_PER_MS,
];
const DAT_LFO_FREQS_HZ : [f32; 4] = [ 0.1, 0.15, 0.12, 0.18 ];
const DAT_LFO_FREQS_HZ : [f64; 4] = [ 0.1, 0.15, 0.12, 0.18 ];
const DAT_INPUT_DIFFUSION1 : f32 = 0.75;
const DAT_INPUT_DIFFUSION2 : f32 = 0.625;
const DAT_PLATE_DIFFUSION1 : f32 = 0.7;
const DAT_PLATE_DIFFUSION2 : f32 = 0.5;
const DAT_INPUT_DIFFUSION1 : f64 = 0.75;
const DAT_INPUT_DIFFUSION2 : f64 = 0.625;
const DAT_PLATE_DIFFUSION1 : f64 = 0.7;
const DAT_PLATE_DIFFUSION2 : f64 = 0.5;
const DAT_LFO_EXCURSION_MS : f32 = 16.0 / DAT_SAMPLES_PER_MS;
const DAT_LFO_EXCURSION_MOD_MAX : f32 = 16.0;
const DAT_LFO_EXCURSION_MS : f64 = 16.0 / DAT_SAMPLES_PER_MS;
const DAT_LFO_EXCURSION_MOD_MAX : f64 = 16.0;
use crate::dsp::helpers::{
AllPass,
@ -80,28 +80,28 @@ use crate::dsp::helpers::{
#[derive(Debug, Clone)]
pub struct DattorroReverb {
last_scale: f32,
last_scale: f64,
inp_dc_block: [DCBlockFilter; 2],
out_dc_block: [DCBlockFilter; 2],
inp_dc_block: [DCBlockFilter<f64>; 2],
out_dc_block: [DCBlockFilter<f64>; 2],
lfos: [TriSawLFO; 4],
lfos: [TriSawLFO<f64>; 4],
input_hpf: OnePoleHPF,
input_lpf: OnePoleLPF,
input_hpf: OnePoleHPF<f64>,
input_lpf: OnePoleLPF<f64>,
pre_delay: DelayBuffer,
input_apfs: [(AllPass, f32, f32); 4],
pre_delay: DelayBuffer<f64>,
input_apfs: [(AllPass<f64>, f64, f64); 4],
apf1: [(AllPass, f32, f32); 2],
hpf: [OnePoleHPF; 2],
lpf: [OnePoleLPF; 2],
apf2: [(AllPass, f32, f32); 2],
delay1: [(DelayBuffer, f32); 2],
delay2: [(DelayBuffer, f32); 2],
apf1: [(AllPass<f64>, f64, f64); 2],
hpf: [OnePoleHPF<f64>; 2],
lpf: [OnePoleLPF<f64>; 2],
apf2: [(AllPass<f64>, f64, f64); 2],
delay1: [(DelayBuffer<f64>, f64); 2],
delay2: [(DelayBuffer<f64>, f64); 2],
left_sum: f32,
right_sum: f32,
left_sum: f64,
right_sum: f64,
dbg_count: usize,
}
@ -109,30 +109,30 @@ pub struct DattorroReverb {
pub trait DattorroReverbParams {
/// Time for the pre-delay of the reverb. Any sensible `ms` that fits
/// into a delay buffer of 5 seconds.
fn pre_delay_time_ms(&self) -> f32;
fn pre_delay_time_ms(&self) -> f64;
/// The size of the reverb, values go from 0.0 to 1.0.
fn time_scale(&self) -> f32;
fn time_scale(&self) -> f64;
/// High-pass input filter cutoff freq in Hz, range: 0.0 to 22000.0
fn input_high_cutoff_hz(&self) -> f32;
fn input_high_cutoff_hz(&self) -> f64;
/// Low-pass input filter cutoff freq in Hz, range: 0.0 to 22000.0
fn input_low_cutoff_hz(&self) -> f32;
fn input_low_cutoff_hz(&self) -> f64;
/// High-pass reverb filter cutoff freq in Hz, range: 0.0 to 22000.0
fn reverb_high_cutoff_hz(&self) -> f32;
fn reverb_high_cutoff_hz(&self) -> f64;
/// Low-pass reverb filter cutoff freq in Hz, range: 0.0 to 22000.0
fn reverb_low_cutoff_hz(&self) -> f32;
fn reverb_low_cutoff_hz(&self) -> f64;
/// Modulation speed factor, range: 0.0 to 1.0
fn mod_speed(&self) -> f32;
fn mod_speed(&self) -> f64;
/// Modulation depth from the LFOs, range: 0.0 to 1.0
fn mod_depth(&self) -> f32;
fn mod_depth(&self) -> f64;
/// Modulation shape (from saw to tri to saw), range: 0.0 to 1.0
fn mod_shape(&self) -> f32;
fn mod_shape(&self) -> f64;
/// The mix between output from the pre-delay and the input diffusion.
/// range: 0.0 to 1.0. Default should be 1.0
fn input_diffusion_mix(&self) -> f32;
fn input_diffusion_mix(&self) -> f64;
/// The amount of plate diffusion going on, range: 0.0 to 1.0
fn diffusion(&self) -> f32;
fn diffusion(&self) -> f64;
/// Internal tank decay time, range: 0.0 to 1.0
fn decay(&self) -> f32;
fn decay(&self) -> f64;
}
impl DattorroReverb {
@ -236,8 +236,8 @@ impl DattorroReverb {
}
#[inline]
pub fn set_time_scale(&mut self, scale: f32) {
if (self.last_scale - scale).abs() > std::f32::EPSILON {
pub fn set_time_scale(&mut self, scale: f64) {
if (self.last_scale - scale).abs() > std::f64::EPSILON {
let scale = scale.max(0.0001);
self.last_scale = scale;
@ -253,7 +253,7 @@ impl DattorroReverb {
}
}
pub fn set_sample_rate(&mut self, srate: f32) {
pub fn set_sample_rate(&mut self, srate: f64) {
self.inp_dc_block[0].set_sample_rate(srate);
self.inp_dc_block[1].set_sample_rate(srate);
self.out_dc_block[0].set_sample_rate(srate);
@ -292,29 +292,29 @@ impl DattorroReverb {
#[inline]
fn calc_apf_delay_times(&mut self, params: &mut dyn DattorroReverbParams)
-> (f32, f32, f32, f32)
-> (f64, f64, f64, f64)
{
let left_apf1_delay_ms =
self.apf1[0].1
+ (self.lfos[0].next_unipolar() as f32
+ (self.lfos[0].next_unipolar() as f64
* DAT_LFO_EXCURSION_MS
* DAT_LFO_EXCURSION_MOD_MAX
* params.mod_depth());
let right_apf1_delay_ms =
self.apf1[1].1
+ (self.lfos[1].next_unipolar() as f32
+ (self.lfos[1].next_unipolar() as f64
* DAT_LFO_EXCURSION_MS
* DAT_LFO_EXCURSION_MOD_MAX
* params.mod_depth());
let left_apf2_delay_ms =
self.apf2[0].1
+ (self.lfos[2].next_unipolar() as f32
+ (self.lfos[2].next_unipolar() as f64
* DAT_LFO_EXCURSION_MS
* DAT_LFO_EXCURSION_MOD_MAX
* params.mod_depth());
let right_apf2_delay_ms =
self.apf2[1].1
+ (self.lfos[3].next_unipolar() as f32
+ (self.lfos[3].next_unipolar() as f64
* DAT_LFO_EXCURSION_MS
* DAT_LFO_EXCURSION_MOD_MAX
* params.mod_depth());
@ -326,8 +326,8 @@ impl DattorroReverb {
pub fn process(
&mut self,
params: &mut dyn DattorroReverbParams,
input_l: f32, input_r: f32
) -> (f32, f32)
input_l: f64, input_r: f64
) -> (f64, f64)
{
// Some parameter setup...
let timescale = 0.0025 + (4.0 - 0.0025) * params.time_scale();
@ -373,9 +373,9 @@ impl DattorroReverb {
let out_hpf = self.input_hpf.process(out_lpf);
// HPF => Pre-Delay
let out_pre_delay =
self.pre_delay.cubic_interpolate_at(params.pre_delay_time_ms());
self.pre_delay.feed(out_hpf);
let out_pre_delay = out_hpf;
// self.pre_delay.cubic_interpolate_at(params.pre_delay_time_ms());
// self.pre_delay.feed(out_hpf);
// Pre-Delay => 4 All-Pass filters
let mut diffused = out_pre_delay;
@ -384,8 +384,8 @@ impl DattorroReverb {
}
// Mix between diffused and pre-delayed intput for further processing
let tank_feed =
crossfade(out_pre_delay, diffused, params.input_diffusion_mix());
let tank_feed = out_pre_delay;
// crossfade(out_pre_delay, diffused, params.input_diffusion_mix());
// First tap for the output
self.left_sum += tank_feed;

View file

@ -3,6 +3,7 @@
// See README.md and COPYING for details.
use std::cell::RefCell;
use num_traits::{Float, FloatConst, cast::FromPrimitive};
/// Logarithmic table size of the table in [fast_cos] / [fast_sin].
static FAST_COS_TAB_LOG2_SIZE : usize = 9;
@ -698,31 +699,35 @@ impl TriggerSampleClock {
/// Default size of the delay buffer: 5 seconds at 8 times 48kHz
const DEFAULT_DELAY_BUFFER_SAMPLES : usize = 8 * 48000 * 5;
#[derive(Debug, Clone, Default)]
pub struct DelayBuffer {
data: Vec<f32>,
wr: usize,
srate: f32,
macro_rules! fc {
($F: ident, $e: expr) => { F::from_f64($e).unwrap() }
}
impl DelayBuffer {
#[derive(Debug, Clone, Default)]
pub struct DelayBuffer<F: Float> {
data: Vec<F>,
wr: usize,
srate: F,
}
impl<F: Float + FromPrimitive> DelayBuffer<F> {
pub fn new() -> Self {
Self {
data: vec![0.0; DEFAULT_DELAY_BUFFER_SAMPLES],
data: vec![fc!(F,0.0); DEFAULT_DELAY_BUFFER_SAMPLES],
wr: 0,
srate: 44100.0,
srate: fc!(F, 44100.0),
}
}
pub fn new_with_size(size: usize) -> Self {
Self {
data: vec![0.0; size],
data: vec![fc!(F, 0.0); size],
wr: 0,
srate: 44100.0,
srate: fc!(F, 44100.0),
}
}
pub fn set_sample_rate(&mut self, srate: f32) {
pub fn set_sample_rate(&mut self, srate: F) {
self.srate = srate;
}
@ -735,7 +740,7 @@ impl DelayBuffer {
/// Please note: For sample accurate feedback you need to retrieve the
/// output of the delay line before feeding in a new signal.
#[inline]
pub fn feed(&mut self, input: f32) {
pub fn feed(&mut self, input: F) {
self.data[self.wr] = input;
self.wr = (self.wr + 1) % self.data.len();
}
@ -743,7 +748,7 @@ impl DelayBuffer {
/// Combines [DelayBuffer::cubic_interpolate_at] and [DelayBuffer::feed]
/// into one convenient function.
#[inline]
pub fn next_cubic(&mut self, delay_time_ms: f32, input: f32) -> f32 {
pub fn next_cubic(&mut self, delay_time_ms: F, input: F) -> F {
let res = self.cubic_interpolate_at(delay_time_ms);
self.feed(input);
res
@ -751,26 +756,26 @@ impl DelayBuffer {
/// Shorthand for [DelayBuffer::cubic_interpolate_at].
#[inline]
pub fn tap_c(&self, delay_time_ms: f32) -> f32 {
pub fn tap_c(&self, delay_time_ms: F) -> F {
self.cubic_interpolate_at(delay_time_ms)
}
/// Shorthand for [DelayBuffer::cubic_interpolate_at].
#[inline]
pub fn tap_n(&self, delay_time_ms: f32) -> f32 {
pub fn tap_n(&self, delay_time_ms: F) -> F {
self.nearest_at(delay_time_ms)
}
/// Shorthand for [DelayBuffer::cubic_interpolate_at].
#[inline]
pub fn tap_l(&self, delay_time_ms: f32) -> f32 {
pub fn tap_l(&self, delay_time_ms: F) -> F {
self.linear_interpolate_at(delay_time_ms)
}
/// Fetch a sample from the delay buffer at the given time.
///
/// * `delay_time_ms` - Delay time in milliseconds.
pub fn linear_interpolate_at(&self, delay_time_ms: f32) -> f32 {
pub fn linear_interpolate_at(&self, delay_time_ms: F) -> F {
let data = &self.data[..];
let len = data.len();
let s_offs = (delay_time_ms * self.srate) / 1000.0;
@ -781,7 +786,7 @@ impl DelayBuffer {
let x0 = data[i % len];
let x1 = data[(i + 1) % len];
let fract = fract as f32;
let fract = fract as F;
x0 * (1.0 - fract) + x1 * fract
}
@ -789,7 +794,7 @@ impl DelayBuffer {
///
/// * `delay_time_ms` - Delay time in milliseconds.
#[inline]
pub fn cubic_interpolate_at(&self, delay_time_ms: f32) -> f32 {
pub fn cubic_interpolate_at(&self, delay_time_ms: F) -> F {
let data = &self.data[..];
let len = data.len();
let s_offs = (delay_time_ms * self.srate) / 1000.0;
@ -816,12 +821,12 @@ impl DelayBuffer {
let a = w + v + (x2 - x0) * 0.5;
let b_neg = w + a;
let fract = fract as f32;
let fract = fract as F;
(((a * fract) - b_neg) * fract + c) * fract + x0
}
#[inline]
pub fn nearest_at(&self, delay_time_ms: f32) -> f32 {
pub fn nearest_at(&self, delay_time_ms: F) -> F {
let len = self.data.len();
let offs = ((delay_time_ms * self.srate) / 1000.0).floor() as usize % len;
let idx = ((self.wr + len) - offs) % len;
@ -829,7 +834,7 @@ impl DelayBuffer {
}
#[inline]
pub fn at(&self, delay_sample_count: usize) -> f32 {
pub fn at(&self, delay_sample_count: usize) -> F {
let len = self.data.len();
let idx = ((self.wr + len) - delay_sample_count) % len;
self.data[idx]
@ -840,18 +845,18 @@ impl DelayBuffer {
const DEFAULT_ALLPASS_COMB_SAMPLES : usize = 8 * 48000;
#[derive(Debug, Clone, Default)]
pub struct AllPass {
delay: DelayBuffer,
pub struct AllPass<F: Float> {
delay: DelayBuffer<F>,
}
impl AllPass {
impl<F: Float> AllPass<F> {
pub fn new() -> Self {
Self {
delay: DelayBuffer::new_with_size(DEFAULT_ALLPASS_COMB_SAMPLES),
}
}
pub fn set_sample_rate(&mut self, srate: f32) {
pub fn set_sample_rate(&mut self, srate: F) {
self.delay.set_sample_rate(srate);
}
@ -860,13 +865,13 @@ impl AllPass {
}
#[inline]
pub fn delay_tap_n(&self, time_ms: f32) -> f32 {
pub fn delay_tap_n(&self, time_ms: F) -> F {
self.delay.tap_n(time_ms)
}
#[inline]
pub fn next(&mut self, time_ms: f32, g: f32, v: f32) -> f32 {
let s = self.delay.linear_interpolate_at(time_ms);
pub fn next(&mut self, time_ms: F, g: F, v: F) -> F {
let s = self.delay.nearest_at(time_ms);
let input = v + -g * s;
self.delay.feed(input);
input * g + s
@ -875,7 +880,7 @@ impl AllPass {
#[derive(Debug, Clone)]
pub struct Comb {
delay: DelayBuffer,
delay: DelayBuffer<f32>,
}
impl Comb {
@ -951,15 +956,15 @@ pub fn process_1pole_lowpass(input: f32, freq: f32, israte: f32, z: &mut f32) ->
}
#[derive(Debug, Clone, Copy, Default)]
pub struct OnePoleLPF {
israte: f32,
a: f32,
b: f32,
freq: f32,
z: f32,
pub struct OnePoleLPF<F: Float> {
israte: F,
a: F,
b: F,
freq: F,
z: F,
}
impl OnePoleLPF {
impl<F: Float + FloatConst> OnePoleLPF<F> {
pub fn new() -> Self {
Self {
israte: 1.0 / 44100.0,
@ -976,17 +981,17 @@ impl OnePoleLPF {
#[inline]
fn recalc(&mut self) {
self.b = (-std::f32::consts::TAU * self.freq * self.israte).exp();
self.b = (-F::TAU * self.freq * self.israte).exp();
self.a = 1.0 - self.b;
}
pub fn set_sample_rate(&mut self, srate: f32) {
pub fn set_sample_rate(&mut self, srate: F) {
self.israte = 1.0 / srate;
self.recalc();
}
#[inline]
pub fn set_freq(&mut self, freq: f32) {
pub fn set_freq(&mut self, freq: F) {
if freq != self.freq {
self.freq = freq;
self.recalc();
@ -994,7 +999,7 @@ impl OnePoleLPF {
}
#[inline]
pub fn process(&mut self, input: f32) -> f32 {
pub fn process(&mut self, input: F) -> F {
self.z = self.a * input + self.z * self.b;
self.z
}
@ -1040,16 +1045,16 @@ pub fn process_1pole_highpass(input: f32, freq: f32, israte: f32, z: &mut f32, y
}
#[derive(Debug, Clone, Copy, Default)]
pub struct OnePoleHPF {
israte: f32,
a: f32,
b: f32,
freq: f32,
z: f32,
y: f32,
pub struct OnePoleHPF<F: Float> {
israte: F,
a: F,
b: F,
freq: F,
z: F,
y: F,
}
impl OnePoleHPF {
impl<F: Float + FloatConst> OnePoleHPF<F> {
pub fn new() -> Self {
Self {
israte: 1.0 / 44100.0,
@ -1068,18 +1073,18 @@ impl OnePoleHPF {
#[inline]
fn recalc(&mut self) {
self.b = (-std::f32::consts::TAU * self.freq * self.israte).exp();
self.b = (-F::TAU * self.freq * self.israte).exp();
self.a = (1.0 + self.b) / 2.0;
}
pub fn set_sample_rate(&mut self, srate: f32) {
pub fn set_sample_rate(&mut self, srate: F) {
self.israte = 1.0 / srate;
self.recalc();
}
#[inline]
pub fn set_freq(&mut self, freq: f32) {
pub fn set_freq(&mut self, freq: F) {
if freq != self.freq {
self.freq = freq;
self.recalc();
@ -1087,7 +1092,7 @@ impl OnePoleHPF {
}
#[inline]
pub fn process(&mut self, input: f32) -> f32 {
pub fn process(&mut self, input: F) -> F {
let v =
self.a * input
- self.a * self.z
@ -1396,13 +1401,13 @@ pub fn process_stilson_moog(
// Copyright (C) 2020 TheWaveWarden
// under GPLv3 or any later
#[derive(Debug, Clone, Copy)]
pub struct DCBlockFilter {
xm1: f64,
ym1: f64,
r: f64,
pub struct DCBlockFilter<F: Float> {
xm1: F,
ym1: F,
r: F,
}
impl DCBlockFilter {
impl<F: Float> DCBlockFilter<F> {
pub fn new() -> Self {
Self {
xm1: 0.0,
@ -1416,7 +1421,7 @@ impl DCBlockFilter {
self.ym1 = 0.0;
}
pub fn set_sample_rate(&mut self, srate: f32) {
pub fn set_sample_rate(&mut self, srate: F) {
self.r = 0.995;
if srate > 90000.0 {
self.r = 0.9965;
@ -1425,11 +1430,11 @@ impl DCBlockFilter {
}
}
pub fn next(&mut self, input: f32) -> f32 {
pub fn next(&mut self, input: F) -> F {
let y = input as f64 - self.xm1 + self.r * self.ym1;
self.xm1 = input as f64;
self.ym1 = y;
y as f32
y as F
}
}
@ -1878,25 +1883,25 @@ impl VPSOscillator {
/// An LFO with a variable reverse point, which can go from reverse Saw, to Tri
/// and to Saw, depending on the reverse point.
#[derive(Debug, Clone, Copy)]
pub struct TriSawLFO {
pub struct TriSawLFO<F: Float> {
/// The (inverse) sample rate. Eg. 1.0 / 44100.0.
israte: f64,
israte: F,
/// The current oscillator phase.
phase: f64,
phase: F,
/// The point from where the falling edge will be used.
rev: f64,
rev: F,
/// Whether the LFO is currently rising
rising: bool,
/// The frequency.
freq: f64,
freq: F,
/// Precomputed rise/fall rate of the LFO.
rise_r: f64,
fall_r: f64,
rise_r: F,
fall_r: F,
/// Initial phase offset.
init_phase: f64,
init_phase: F,
}
impl TriSawLFO {
impl<F: Float> TriSawLFO<F> {
pub fn new() -> Self {
let mut this = Self {
israte: 1.0 / 44100.0,
@ -1912,7 +1917,7 @@ impl TriSawLFO {
this
}
pub fn set_phase_offs(&mut self, phase: f64) {
pub fn set_phase_offs(&mut self, phase: F) {
self.init_phase = phase;
self.phase = phase;
}
@ -1924,8 +1929,8 @@ impl TriSawLFO {
self.fall_r = -1.0 / (1.0 - self.rev);
}
pub fn set_sample_rate(&mut self, srate: f32) {
self.israte = 1.0 / (srate as f64);
pub fn set_sample_rate(&mut self, srate: F) {
self.israte = 1.0 / (srate as F);
self.recalc();
}
@ -1936,14 +1941,14 @@ impl TriSawLFO {
}
#[inline]
pub fn set(&mut self, freq: f32, rev: f32) {
self.freq = freq as f64;
self.rev = rev as f64;
pub fn set(&mut self, freq: F, rev: F) {
self.freq = freq as F;
self.rev = rev as F;
self.recalc();
}
#[inline]
pub fn next_unipolar(&mut self) -> f64 {
pub fn next_unipolar(&mut self) -> F {
if self.phase >= 1.0 {
self.phase -= 1.0;
self.rising = true;
@ -1966,7 +1971,7 @@ impl TriSawLFO {
}
#[inline]
pub fn next_bipolar(&mut self) -> f64 {
pub fn next_bipolar(&mut self) -> F {
(self.next_unipolar() * 2.0) - 1.0
}
}

View file

@ -9,7 +9,7 @@ use crate::dsp::helpers::AllPass;
/// A simple amplifier
#[derive(Debug, Clone)]
pub struct AllP {
allpass: Box<AllPass>,
allpass: Box<AllPass<f64>>,
}
impl AllP {
@ -72,7 +72,7 @@ impl DspNode for AllP {
fn outputs() -> usize { 1 }
fn set_sample_rate(&mut self, srate: f32) {
self.allpass.set_sample_rate(srate);
self.allpass.set_sample_rate(srate as f64);
}
fn reset(&mut self) {
@ -100,9 +100,9 @@ impl DspNode for AllP {
out.write(frame,
ap.next(
denorm::AllP::time(time, frame),
denorm::AllP::g(g, frame),
v));
denorm::AllP::time(time, frame) as f64,
denorm::AllP::g(g, frame) as f64,
v as f64) as f32);
}
let last_frame = ctx.nframes() - 1;

View file

@ -20,7 +20,7 @@ macro_rules! fa_delay_mode { ($formatter: expr, $v: expr, $denorm_v: expr) => {
/// A simple amplifier
#[derive(Debug, Clone)]
pub struct Delay {
buffer: Box<DelayBuffer>,
buffer: Box<DelayBuffer<f32>>,
clock: TriggerSampleClock,
}

View file

@ -36,41 +36,41 @@ impl DatParams {
}
impl DattorroReverbParams for DatParams {
fn pre_delay_time_ms(&self) -> f32 {
denorm::PVerb::predly(&self.predly, self.frame)
fn pre_delay_time_ms(&self) -> f64 {
denorm::PVerb::predly(&self.predly, self.frame) as f64
}
fn time_scale(&self) -> f32 {
denorm::PVerb::size(&self.size, self.frame)
fn time_scale(&self) -> f64 {
denorm::PVerb::size(&self.size, self.frame) as f64
}
fn decay(&self) -> f32 {
denorm::PVerb::dcy(&self.dcy, self.frame)
fn decay(&self) -> f64 {
denorm::PVerb::dcy(&self.dcy, self.frame) as f64
}
fn input_low_cutoff_hz(&self) -> f32 {
denorm::PVerb::ilpf(&self.ilpf, self.frame)
fn input_low_cutoff_hz(&self) -> f64 {
denorm::PVerb::ilpf(&self.ilpf, self.frame) as f64
}
fn input_high_cutoff_hz(&self) -> f32 {
denorm::PVerb::ihpf(&self.ihpf, self.frame)
fn input_high_cutoff_hz(&self) -> f64 {
denorm::PVerb::ihpf(&self.ihpf, self.frame) as f64
}
fn diffusion(&self) -> f32 {
denorm::PVerb::idif(&self.idif, self.frame)
fn diffusion(&self) -> f64 {
denorm::PVerb::idif(&self.idif, self.frame) as f64
}
fn input_diffusion_mix(&self) -> f32 {
denorm::PVerb::dmix(&self.dmix, self.frame)
fn input_diffusion_mix(&self) -> f64 {
denorm::PVerb::dmix(&self.dmix, self.frame) as f64
}
fn mod_speed(&self) -> f32 {
denorm::PVerb::mspeed(&self.mspeed, self.frame)
fn mod_speed(&self) -> f64 {
denorm::PVerb::mspeed(&self.mspeed, self.frame) as f64
}
fn mod_depth(&self) -> f32 {
denorm::PVerb::mdepth(&self.mdepth, self.frame)
fn mod_depth(&self) -> f64 {
denorm::PVerb::mdepth(&self.mdepth, self.frame) as f64
}
fn mod_shape(&self) -> f32 {
denorm::PVerb::mshp(&self.mshp, self.frame)
fn mod_shape(&self) -> f64 {
denorm::PVerb::mshp(&self.mshp, self.frame) as f64
}
fn reverb_low_cutoff_hz(&self) -> f32 {
denorm::PVerb::rlpf(&self.rlpf, self.frame)
fn reverb_low_cutoff_hz(&self) -> f64 {
denorm::PVerb::rlpf(&self.rlpf, self.frame) as f64
}
fn reverb_high_cutoff_hz(&self) -> f32 {
denorm::PVerb::rhpf(&self.rhpf, self.frame)
fn reverb_high_cutoff_hz(&self) -> f64 {
denorm::PVerb::rhpf(&self.rhpf, self.frame) as f64
}
}
@ -147,7 +147,7 @@ impl DspNode for PVerb {
fn outputs() -> usize { 1 }
fn set_sample_rate(&mut self, srate: f32) {
self.verb.set_sample_rate(srate);
self.verb.set_sample_rate(srate as f64);
}
fn reset(&mut self) {
@ -196,10 +196,12 @@ impl DspNode for PVerb {
let (i_l, i_r) = (in_l.read(frame), in_r.read(frame));
params.set_frame(frame);
let (l, r) = verb.process(&mut params, i_l, i_r);
let (l, r) = verb.process(&mut params, i_l as f64, i_r as f64);
out_l.write(frame, crossfade(i_l, l, denorm::PVerb::mix(mix, frame)));
out_r.write(frame, crossfade(i_r, r, denorm::PVerb::mix(mix, frame)));
out_l.write(
frame, crossfade(i_l, l as f32, denorm::PVerb::mix(mix, frame)));
out_r.write(
frame, crossfade(i_r, r as f32, denorm::PVerb::mix(mix, frame)));
}
ctx_vals[0].set(

View file

@ -11,7 +11,7 @@ use super::helpers::{TriSawLFO, Trigger};
#[derive(Debug, Clone)]
pub struct TsLfo {
lfo: Box<TriSawLFO>,
lfo: Box<TriSawLFO<f64>>,
trig: Trigger,
}
@ -58,7 +58,7 @@ impl DspNode for TsLfo {
fn outputs() -> usize { 1 }
fn set_sample_rate(&mut self, srate: f32) {
self.lfo.set_sample_rate(srate);
self.lfo.set_sample_rate(srate as f64);
}
fn reset(&mut self) {
@ -90,8 +90,8 @@ impl DspNode for TsLfo {
let time_ms = denorm::TsLfo::time(time, frame).clamp(0.1, 300000.0);
lfo.set(
1000.0 / time_ms,
denorm::TsLfo::rev(rev, frame));
(1000.0 / time_ms) as f64,
denorm::TsLfo::rev(rev, frame) as f64);
out.write(frame, lfo.next_unipolar() as f32);
}