HexoDSP/src/dsp/node_rndwk.rs

174 lines
6.9 KiB
Rust

// Copyright (c) 2021 Weird Constructor <weirdconstructor@gmail.com>
// This file is a part of HexoDSP. Released under GPL-3.0-or-later.
// See README.md and COPYING for details.
use synfx_dsp::{Rng, SlewValue, Trigger};
use crate::dsp::{DspNode, LedPhaseVals, NodeContext, NodeId, ProcBuf, SAtom};
use crate::nodes::{NodeAudioContext, NodeExecContext};
/// A triggered random walker
#[derive(Debug, Clone)]
pub struct RndWk {
rng: Rng,
slew_val: SlewValue<f64>,
trig: Trigger,
target: f64,
}
impl RndWk {
pub fn new(nid: &NodeId) -> Self {
let mut rng = Rng::new();
rng.seed((0x193a67f4a8a6d769_u64).wrapping_add(0x262829 * (nid.instance() as u64 + 1)));
Self { rng, trig: Trigger::new(), slew_val: SlewValue::new(), target: 0.0 }
}
pub const trig: &'static str = "RndWk trig\nThis trigger generates a new random number within \
the current 'min'/'max' range.\nRange: (-1..1)";
pub const step: &'static str = "RndWk step\nThis is the maximum possible step size of the \
random number drawn upon 'trig'. Setting this to 0.0 will disable \
the randomness.\nThe minimum step size can be defined \
by the 'offs' parameter.\nRange: (0..1)";
pub const offs: &'static str =
"RndWk offs\nThe minimum step size and direction that is done on each 'trig'.\
Depending on the size of the 'offs' and the 'min'/'max' range, \
this might result in the output value being close to the limits \
of that range.\nRange: (-1..1)";
pub const min: &'static str =
"RndWk min\nThe minimum of the new target value. If a value is drawn \
that is outside of this range, it will be reflected back into it.\
\nRange: (0..1)";
pub const max: &'static str =
"RndWk max\nThe maximum of the new target value. If a value is drawn \
that is outside of this range, it will be reflected back into it.\
\nRange: (0..1)";
pub const slew: &'static str =
"RndWk slew\nThe slew rate limiting time. Thats the time it takes to \
get to 1.0 from 0.0. Useful for smoothing modulation of audio signals. \
The higher the time, the smoother/slower the transition to new \
target values will be.\nRange: (0..1)";
pub const sig: &'static str = "RndWk sig\nOscillator output\nRange: (-1..1)\n";
pub const DESC: &'static str = r#"Random Walker
This modulator generates a random number by walking a pre defined maximum random 'step' width. For smoother transitions a slew rate limiter is integrated.
"#;
pub const HELP: &'static str = r#"RndWk - Random Walker
This modulator generates a random number by walking a pre defined
maximum random 'step' width. The newly generated target value will always
be folded within the defined 'min'/'max' range. The 'offs' parameter defines a
minimal step width each 'trig' has to change the target value.
For smoother transitions, if you want to modulate an audio signal with this,
a slew rate limiter ('slew') is integrated.
You can disable all randomness by setting 'step' to 0.0.
Tip: Interesting and smooth results can be achieved if you set 'slew'
to a (way) longer time than the 'trig' interval. It will smooth
off the step widths and the overall motion even more.
"#;
}
impl DspNode for RndWk {
fn outputs() -> usize {
1
}
fn set_sample_rate(&mut self, srate: f32) {
self.slew_val.set_sample_rate(srate as f64);
}
fn reset(&mut self) {
self.slew_val.reset();
self.trig.reset();
self.target = 0.0;
}
#[inline]
fn process<T: NodeAudioContext>(
&mut self,
ctx: &mut T,
_ectx: &mut NodeExecContext,
_nctx: &NodeContext,
_atoms: &[SAtom],
inputs: &[ProcBuf],
outputs: &mut [ProcBuf],
ctx_vals: LedPhaseVals,
) {
use crate::dsp::{denorm, inp, out};
let trig = inp::RndWk::trig(inputs);
let step = inp::RndWk::step(inputs);
let offs = inp::RndWk::offs(inputs);
let min = inp::RndWk::min(inputs);
let max = inp::RndWk::max(inputs);
let slew = inp::RndWk::slew(inputs);
let out = out::RndWk::sig(outputs);
for frame in 0..ctx.nframes() {
if self.trig.check_trigger(denorm::RndWk::trig(trig, frame)) {
let mut min = denorm::RndWk::min(min, frame).clamp(0.0, 1.0);
let mut max = denorm::RndWk::max(max, frame).clamp(0.0, 1.0);
if min > max {
std::mem::swap(&mut min, &mut max);
}
let delta = (max - min).clamp(0.0001, 1.0);
let step = denorm::RndWk::step(step, frame).clamp(-1.0, 1.0);
let offs = denorm::RndWk::offs(offs, frame).clamp(-1.0, 1.0);
let mut target =
self.slew_val.value() as f32 + ((self.rng.next() * 2.0 * step) - step) + offs;
// println!("{:8.6} {:8.6} {:8.6}", min, max, target);
// clamp target into a range we can reflect
target = target.clamp(min - (delta * 0.99), max + (delta * 0.99));
// reflect back the overshoots:
if target > max {
target = max - (max - target).abs();
}
if target < min {
target = min + (min - target).abs();
}
self.target = target as f64;
}
let slew_time_ms = denorm::RndWk::slew(slew, frame);
out.write(frame, self.slew_val.next(self.target, slew_time_ms as f64) as f32);
}
ctx_vals[0].set(out.read(ctx.nframes() - 1));
}
// fn graph_fun() -> Option<GraphFun> {
// let mut osc = VPSOscillator::new(0.0);
// let israte = 1.0 / 128.0;
//
// Some(Box::new(move |gd: &dyn GraphAtomData, init: bool, _x: f32, _xn: f32| -> f32 {
// if init {
// osc.reset();
// }
//
// let v = NodeId::RndWk(0).inp_param("v").unwrap().inp();
// let vs = NodeId::RndWk(0).inp_param("vs").unwrap().inp();
// let d = NodeId::RndWk(0).inp_param("d").unwrap().inp();
// let damt = NodeId::RndWk(0).inp_param("damt").unwrap().inp();
// let dist = NodeId::RndWk(0).inp_param("dist").unwrap().inp();
//
// let v = gd.get_denorm(v as u32).clamp(0.0, 1.0);
// let d = gd.get_denorm(d as u32).clamp(0.0, 1.0);
// let vs = gd.get_denorm(vs as u32).clamp(0.0, 20.0);
// let damt = gd.get_denorm(damt as u32);
// let dist = gd.get(dist as u32).map(|a| a.i()).unwrap_or(0);
//
// let v = VPSOscillator::limit_v(d, v + vs);
// let s = osc.next(1.0, israte, d, v);
// let s = apply_distortion(s, damt, dist as u8);
//
// (s + 1.0) * 0.5
// }))
// }
}