#include #define SERIAL_DEBUG 0 #define MODE_NORMAL 0 #define MODE_SETTIME 1 #define MODE_SETALARM 2 #define PIN_BUTTON 3 #define PIN_BUZZER 5 #define PIN_REG_CLOCK 7 #define PIN_REG_DATA 4 #define PIN_REG_LATCH 6 #define PIN_TOUCH_0 11 #define PIN_TOUCH_1 10 #define PIN_TOUCH_2 2 #define PIN_TOUCH_3 9 #define PIN_TOUCH_COM A1 CapacitiveSensor touch_0 = CapacitiveSensor(PIN_TOUCH_COM, PIN_TOUCH_0); CapacitiveSensor touch_1 = CapacitiveSensor(PIN_TOUCH_COM, PIN_TOUCH_1); CapacitiveSensor touch_2 = CapacitiveSensor(PIN_TOUCH_COM, PIN_TOUCH_2); CapacitiveSensor touch_3 = CapacitiveSensor(PIN_TOUCH_COM, PIN_TOUCH_3); // Matrix state unsigned char matrix[8] = {0b10000001, 0, 0, 0, 0, 0, 0, 0b10000001}; unsigned char matrix_row_on = 0; // Interface mode unsigned char mode = MODE_NORMAL; // Selected number (0..4: None, Hour, Minute, Second) unsigned char number_selection = 0; // Time added to internal clock, to fit real time unsigned long time_offset = 0; unsigned char alarm = false; unsigned long alarm_time = 0; // Is alarm ringing unsigned char alarm_ringing = false; unsigned long alarm_ring_start; unsigned long last_light_measure = 0; unsigned long touch_time[4] = {0, 0, 0, 0}; unsigned long last_touch_measure = 0; unsigned char touch_step = 0; // Bytewise reverse unsigned char reverse(unsigned char b) { b = (b & 0xF0) >> 4 | (b & 0x0F) << 4; b = (b & 0xCC) >> 2 | (b & 0x33) << 2; b = (b & 0xAA) >> 1 | (b & 0x55) << 1; return b; } unsigned char fix_pixels(unsigned char b) { return (b << 1) | (b >> 7); } void shift_matrix() { digitalWrite(PIN_REG_LATCH, LOW); shiftOut(PIN_REG_DATA, PIN_REG_CLOCK, MSBFIRST, ~(1 << matrix_row_on)); shiftOut(PIN_REG_DATA, PIN_REG_CLOCK, MSBFIRST, fix_pixels(matrix[(matrix_row_on+7)%8])); digitalWrite(PIN_REG_LATCH, HIGH); matrix_row_on = (matrix_row_on + 1) % 8; } void draw_time(unsigned long t) { unsigned char seconds = t/1000%60; unsigned char minutes = t/60000%60; unsigned char hours = t/3600000%24; matrix[1] = reverse(seconds) >> 1; matrix[2] = matrix[1]; matrix[3] = reverse(minutes) >> 1; matrix[4] = matrix[3]; matrix[5] = reverse(hours) >> 1; matrix[6] = matrix[5]; } void draw_mode() { switch(mode) { case MODE_NORMAL: matrix[0] = 0b10000001; break; case MODE_SETTIME: matrix[0] = 0b10011001; break; case MODE_SETALARM: matrix[0] = 0b10111101; break; } if(alarm) matrix[0] |= 0b01000010; } void draw_number_selection() { switch(number_selection) { case 1: matrix[1] |= 0b10000001; break; case 2: matrix[3] |= 0b10000001; break; case 3: matrix[5] |= 0b10000001; break; } } const unsigned char HEX_ALPHA[16] = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'}; void send_hex(unsigned long val) { Serial.write(HEX_ALPHA[(val >> 28) & 0xf]); Serial.write(HEX_ALPHA[(val >> 24) & 0xf]); Serial.write(HEX_ALPHA[(val >> 20) & 0xf]); Serial.write(HEX_ALPHA[(val >> 16) & 0xf]); Serial.write(HEX_ALPHA[(val >> 12) & 0xf]); Serial.write(HEX_ALPHA[(val >> 8) & 0xf]); Serial.write(HEX_ALPHA[(val >> 4) & 0xf]); Serial.write(HEX_ALPHA[val & 0xf]); Serial.write('\n'); } void setup() { pinMode(PIN_REG_DATA, OUTPUT); pinMode(PIN_REG_CLOCK, OUTPUT); pinMode(PIN_REG_LATCH, OUTPUT); pinMode(PIN_BUZZER, OUTPUT); pinMode(PIN_BUTTON, INPUT_PULLUP); pinMode(13, OUTPUT); digitalWrite(13, LOW); #if SERIAL_DEBUG Serial.begin(9600); #endif } void loop() { #if SERIAL_DEBUG send_hex(touch_0.capacitiveSensor(10)); send_hex(touch_1.capacitiveSensor(10)); send_hex(touch_2.capacitiveSensor(10)); send_hex(touch_3.capacitiveSensor(10)); delay(100); #endif // Calibrate the thresholds according to your resistors if(millis() > last_touch_measure + 15) { switch(touch_step) { case 0: if(touch_0.capacitiveSensor(10) > 126 && millis() > touch_time[0] + 250) { touch_time[0] = millis(); mode = (mode+1) % 3; stop_ringing(); } break; case 1: if(touch_1.capacitiveSensor(10) > 126 && millis() > touch_time[1] + 250) { touch_time[1] = millis(); number_selection = (number_selection+1) % 4; stop_ringing(); } break; case 2: if(touch_2.capacitiveSensor(10) > 31 && millis() > touch_time[2] + 150) { touch_time[2] = millis(); change_selected_number(1); stop_ringing(); } break; case 3: if(touch_3.capacitiveSensor(10) > 31 && millis() > touch_time[3] + 150) { touch_time[3] = millis(); change_selected_number(-1); stop_ringing(); } } touch_step = (touch_step + 1) % 4; last_touch_measure = millis(); } if(alarm && !alarm_ringing) { unsigned long t = ((millis() + time_offset) / 1000) % 86400; if(alarm_time / 1000 == t) { alarm_ringing = true; alarm_ring_start = millis(); } } if(alarm_ringing) { if(millis()%1000 < 100) { matrix[7] = 0b11111111; analogWrite(PIN_BUZZER, 1); } else { matrix[7] = 0b10000001; digitalWrite(PIN_BUZZER, LOW); } if(digitalRead(PIN_BUTTON) == LOW) { stop_ringing(); } } draw_mode(); if(mode == MODE_SETALARM) draw_time(alarm_time); else draw_time(millis() + time_offset); draw_number_selection(); shift_matrix(); } void change_selected_number(signed int nb) { switch(mode) { case MODE_NORMAL: if(nb > 0) alarm = true; else if(nb < 0) alarm = false; case MODE_SETTIME: change_time(&time_offset, nb); break; case MODE_SETALARM: change_time(&alarm_time, nb); break; } } void change_time(unsigned long *t, signed int mul) { switch(number_selection) { case 1: *t += mul * 1000; break; case 2: *t += mul * 60000; break; case 3: *t += mul * 3600000; break; } *t %= 86400000; } void stop_ringing() { digitalWrite(PIN_BUZZER, LOW); matrix[7] = 0b10000001; alarm_ringing = false; }