bevyjam/src/particle_effect.rs
2022-08-24 11:33:52 +02:00

139 lines
3.8 KiB
Rust

use bevy::{prelude::*, sprite::Mesh2dHandle};
use rand::Rng;
use rand_distr::{Distribution, UnitCircle};
#[cfg(not(target_arch = "wasm32"))]
pub const POOL_COUNT: usize = 100;
#[cfg(target_arch = "wasm32")]
pub const POOL_COUNT: usize = 50;
pub const MIN_VELOCITY: f32 = 10.0;
pub const MAX_VELOCITY: f32 = 100.0;
pub const _VELOCITY_SCALE: f32 = 0.1;
pub const PARTICLE_EFFECT_RADIUS: f32 = 70.0;
pub struct ParticleEffectPlugin;
impl Plugin for ParticleEffectPlugin {
fn build(&self, app: &mut App) {
app.init_resource::<ParticleMesh>()
.insert_resource(ParticleEffectResource::new(Vec3::new(
10000.0, 10000.0, 0.0,
)))
.add_startup_system(particle_effect_startup)
.add_system(particle_effect_system);
}
}
pub struct ParticleMesh {
square: Mesh2dHandle,
}
impl FromWorld for ParticleMesh {
fn from_world(world: &mut World) -> Self {
let mut meshes = world.get_resource_mut::<Assets<Mesh>>().unwrap();
Self {
square: meshes
.add(Mesh::from(shape::Quad {
size: Vec2 { x: 4.0, y: 4.0 },
flip: false,
}))
.into(),
}
}
}
#[derive(bevy_inspector_egui::Inspectable)]
pub struct ParticleEffectResource {
pub translation: Vec3,
pub prev_translation: Vec3,
pub radius_squared: f32,
pub color: Color,
}
impl ParticleEffectResource {
fn new(init_translation: Vec3) -> Self {
Self {
translation: init_translation,
prev_translation: init_translation,
radius_squared: PARTICLE_EFFECT_RADIUS * PARTICLE_EFFECT_RADIUS,
color: Color::WHITE,
}
}
}
#[derive(Default, Component)]
pub struct ParticleComponent {
pub velocity: Vec3,
}
impl ParticleComponent {
pub fn new() -> Self {
let mut particle_component: Self = Self::default();
particle_component.randomize_velocity(MIN_VELOCITY, MAX_VELOCITY);
particle_component
}
pub fn randomize_velocity(&mut self, min_velocity: f32, max_velocity: f32) {
let random_direction: [f32; 2] = UnitCircle.sample(&mut rand::thread_rng());
let random_magnitude: f32 = rand::thread_rng().gen_range(min_velocity..max_velocity);
self.velocity = Vec3::new(random_direction[0], random_direction[1], 0.0) * random_magnitude;
}
}
fn particle_effect_startup(
mut commands: Commands,
particle_mesh: Res<ParticleMesh>,
mut materials: ResMut<Assets<ColorMaterial>>,
) {
for _p in 0..POOL_COUNT {
let color_mesh = ColorMesh2dBundle {
mesh: particle_mesh.square.clone(),
material: materials.add(ColorMaterial::from(Color::WHITE)),
..default()
};
commands
.spawn_bundle(color_mesh)
.insert(ParticleComponent::new());
}
}
fn particle_effect_system(
mut materials: ResMut<Assets<ColorMaterial>>,
mut query: Query<(
&mut Transform,
&mut ParticleComponent,
&Handle<ColorMaterial>,
)>,
mut particle_effect: ResMut<ParticleEffectResource>,
time: Res<Time>,
) {
let delta_seconds: f32 = f32::max(0.001, time.delta_seconds());
let delta_position: Vec3 = particle_effect.translation - particle_effect.prev_translation;
// let overall_velocity: Vec3 = delta_position / delta_seconds;
particle_effect.prev_translation = particle_effect.translation;
for (mut transform, mut particle_component, color_material) in query.iter_mut() {
// particle_component.velocity -= overall_velocity * VELOCITY_SCALE;
transform.translation += particle_component.velocity * delta_seconds + delta_position;
let squared_distance: f32 = transform
.translation
.distance_squared(particle_effect.translation);
if squared_distance > particle_effect.radius_squared {
transform.translation = particle_effect.translation;
particle_component.randomize_velocity(MIN_VELOCITY, MAX_VELOCITY);
}
if let Some(material) = materials.get_mut(color_material) {
material.color = particle_effect.color;
material.color.set_a(
(particle_effect.radius_squared - squared_distance)
/ particle_effect.radius_squared,
);
}
}
}